
he leapfrogging samplesort was introduced in
1995 but was not analyzed completely. In this
paper, we analyze the algorithm in terms of
expected number of comparisons. In particular,
we obtain an estimated expected number of

comparisons of n ⎡ log (n+1)⎤ - 2 ⎡ log (n+1) ⎤ - n + ⎡ log (n+1) ⎤
+ 1 comparisons using the assumption that we estimate instead
the cumulative distribution function of the input sequence from a
sample. It should be noted that the results obtained in this paper
is an estimate of the true expected number of comparisons. The
problem of getting the true expected number of comparisons
remains open.

T
KEYWORDS

Samplesort, quicksort, leapfrogging samplesort, random sample,
probability, analysis of algorithms.

INTRODUCTION

Quicksort (Hoare 1962) is considered one of the algorithms
that requires a minimal number of comparisons on the average.
Under the assumption that all permutations of the input are
equally likely, Hibbard 1962 showed that the expected number

of comparisons using quicksort on an input sequence of size n is
given by 1.39(n+1) log n - 2.85n + 2.15 (All logarithms
throughout this paper are to base 2, unless otherwise stated
explicitly.) Frazer and McKellar 1970 improved on this by
introducing a samplesort algorithm that requires n log n + O(n
log log n) comparisons on the average. More lately, Chen 2001
introduced PEsort which was analyzed by Cole and Kandathil
2004 to require an average of n log n + O(n) comparisons. Cole
and Kandathil 2004 also introduced partition sort which also
requires n log n + O(n) comparisons on the average. Finally,
Chen 2006 introduced another samplesort-based algorithm that
also requires n log n + O(n) comparisons on the average.

In this paper, we show analytically that the leapfrogging
samplesort of Albacea 1995 requires an estimated n ⎡ log
(n+1)⎤ - 2 ⎡ log (n+1) ⎤ - n + ⎡ log (n+1) ⎤ + 1 expected number of
comparisons. The average-case analysis of leapfrogging
samplesort is very difficult to do, however, with the assumptions
and results of Frazer and McKellar 1970, specifically their
Lemmas 1 and 2, we were able to finally give an estimate of the
expected number of comparisons required in leapfrogging
samplesort.

Leapfrogging Samplesort
Leapfrogging samplesort starts with 1 element and this is

used as a sorted sample to partition the next 2 elements with the
objective of producing a sorted sequence with 3 elements. Then,
using the sorted 3 elements as a sample this is used to partition
the next 4 elements in order to produce a sorted sequence with 7
elements. This is repeated until the whole sequence is sorted.
One will notice that if the size of the sample is s, then this is
used to partition the next s+1 elements.

Given a sorted sample of size s, the middle element of the

14 Philippine Science Letters Vol. 5 | No. 1 | 2012

Email Address: eaalbacea@uplb.edu.ph
Submitted: December 6, 2011
Accepted: December 27, 2011
Published: January 30, 2012
Editor-in-charge: Amador C. Muriel
Reviewer:
 Amador C. Muriel

ARTICLE

Average-case analysis of Leapfrogging
samplesort

Eliezer A. Albacea

Institute of Computer Science, University of the Philippines Los Baños
College, Laguna, Philippines

sorted sample, say v, is used to partition the next s+1 unsorted
elements. When partitioning, those elements in the unsorted part
that are less than v are moved to the left and those greater than v
are moved to the right. This procedure is called the Partition
procedure. Half of the sorted sample whose elements are greater
than v are then moved to the left of the partition whose elements
are greater than v using a procedure called Move Sample
procedure. Thus, we produce two sets of elements, namely those
greater than v and those less than v. Each set is prefixed by a
sorted sample whose size is half the original size of the sorted
sample. The partitioning and moving of a sample are then called
recursively on both sets of elements.

An implementation of leapfrogging samplesort is given
below.

void LFSamplesort(int first, int last)
{
 int s;
 if (last > first) {
 s = 1;
 while (s <= (last-first-s)) {
 Leapfrog(first, first+s-1, first+s+s);
 s += (s+1);
 }
 Leapfrog(first, first+s-1, last);
 }
}

void Leapfrog(int s1, int ss, int u)
{
 int i,j,k, sm, v,t;
 if (s1 > ss) LFSamplesort(ss+1, u);
 else
 if (u > ss) {
 sm = (s1+ss) / 2;
 /* Partition */
 v = A[sm];
 j = ss;
 for(i=ss+1; i <= u; i++) {
 if (A[i] < v) {
 j++;
 t = A[j];
 A[j] = A[i];
 A[i] = t;
 }
 }
 /* Move Sample */
 if (j > ss) {
 for (k=j, i=ss; i >= sm; k- -, i- -) {
 t = A[i];
 A[i] = A[k];
 A[k] = t;
 }

 }
 Leapfrog(s1, sm-1,sm+j-ss-1);
 Leapfrog(sm+j-ss+1, j, u);
 }
}

It is worth noting that the stages in leapfrogging

samplesort, that is, a sorted sample is inserted in an unsorted
part, is exactly the same as the second stage of the samplesort
algorithm of Frazer and McKellar 1970 where a sorted sample is
inserted in the remaining unsorted elements.

Expected Number of Comparisons
The analysis in terms of expected number of comparisons

assumes that every time the algorithm is executed the elements
of the sample denoted by S, which are used to partition the
unsorted elements U, is a random sample of (S ∪ U). The
sampling approach used in the sorting algorithm of Frazer and
McKellar 1970 could be used to insure that we have a random
sample. However, note that this assumption can easily be
incorporated in the algorithm without additional comparisons.
Assuming we have n = 2i -1 elements. First, we randomly choose
a subset of size 2i-1-1 and place this in the first 2i-1-1 locations.
Then, using this 2i-1-1 elements we randomly choose a subset of
size 2i-2-1 and place this in the first 2i-2-1. We repeat this process
until we have 3 elements where we choose a random sample of
size 1 and place this in the first location.

With this assumption holding, we can use the following
result of Frazer and McKellar 1970.

Lemma 1: When inserting the sample S of size s to an
unsorted part U of size u, the expected number of elements in
each partition is u/(s+1).

Proof: This is a consequence of Lemma 1 of Frazer and
McKellar 1970.

Let S = {s1 , s2 , ..., ss } be a randomly chosen subset of S ∪
U numbered such that si < si+1. Let U = {u1, u2, ..., uu } be the set
of unsorted elements with items numbered such that ui < ui+1.
When inserting the sample S to set U, this partitions the set U
into s+1 subsets, U0, U1, ..., Us, where:

U0 = { u | u < s1 },
Ui = { u | si < u < si+1 }, 1 ≤ i < s,
Us = { u | ss < u }.

In Lemma 1, the number of elements in Ui, where 0 ≤ i ≤ s,
is u/(s+1).

Lemma 2: Leapfrogging samplesort will partition with a
pivot element an unsorted sequence of size u using u
comparisons.

Vol. 5 | No. 1 | 2012 Philippine Science Letters 15

Proof: This is obvious from the part of the code where
partitioning is done. Specifically, the following part of the code
that does partitioning is the following:

 /* Partition */
 v = A[sm];
 j = ss;
 for(i=ss+1; i <= u; i++) {
 if (A[i] < v) {
 j++;
 t = A[j];
 A[j] = A[i];
 A[i] = t;
 }
 }

Clearly, the for loop will iterate u times.

Theorem 1: The expected number of comparisons
involved in leapfrogging samplesort is n ⎡ log (n+1)⎤ - 2 ⎡ log

(n+1) ⎤- n + ⎡ log (n+1) ⎤ + 1 comparisons.

Proof: Consider one stage of the sorting process where the
Leapfrog procedure is given a sorted sample of size s and an
unsorted part of size s+1. This means that the input size is n =
2s+1 = 2i-1, where i>0.

The sorting process will first use the middle (median) of
the sorted sample as a pivot to partition the s+1 unsorted
elements and by Lemma 2 this will require s+1 comparisons. By
Lemma 1, it is expected that the pivot element will divide the
unsorted s+1 elements into two equal parts. Then, these two
equal unsorted parts are each partitioned using the first quarter
and third quarter elements of the sorted sample, respectively.
This process is repeated until there is only one element in the
sorted part and two elements in the unsorted part. By Lemma 1
after partitioning the unsorted part using all the elements of the
sorted sample the expected size of each partition is 1.

Let C(2s+1) be the expected number of comparisons
required for executing the Leapfrog procedure on a sample of
size s and unsorted part of size s+1. This gives

C(2s+1) = (s+1)+2 ((s+1)/2)+4 ((s+1)/4)+ ... + 2log (s+1) – 1

((s+1)/2log (s+1) – 1)
 = (s+1) log (s+1)

This is consistent with Lemma 2 of Frazer and McKellar
1970.

Note that leapfrogging samplesort does sorting for a sorted
sample of size s=1 and unsorted part of size s+1=2, then
repeated on sample size s=3 and unsorted part of size s+1=4,
and so on until the sample of size s=2⎡log (n+1) ⎤ -1 -1 and unsorted
part of size h where 1 ≤ h ≤ 2⎡ log (n+1)⎤ -1 .

Hence, for any input n, the whole sorting process will
require an expected number of comparisons of

C(n) = 2 log 2 + 4 log 4 + 8 log 8 + ... + h log 2⎡ log (n+1)⎤ - 1

 = 2 log 2 + 4 log 4 + 8 log 8 + ... + 2⎡ log (n+1) ⎤ - 1 log 2⎡ log (n+1) ⎤ - 1

 - (2 ⎡ log (n+1) ⎤ -1 - h)(log 2 ⎡ log (n+1) ⎤ - 1)

 =

∑
−+

=

1)1log(

1

n

i

 i 2i - (2 ⎡ log (n+1) ⎤ -1 - h)(⎡ log (n+1) ⎤ - 1)

 = ⎡ log (n+1) ⎤ 2 ⎡ log (n+1) ⎤ - 2(2 ⎡ log (n+1) ⎤) + 2
 - (2 ⎡ log (n+1) ⎤ - 1 - (n – 2 ⎡ log (n+1) ⎤ -1 +1))(⎡ log (n+1) ⎤ - 1)

 = ⎡ log (n+1) ⎤ 2 ⎡ log (n+1) ⎤ - 2 (2 ⎡ log (n+1) ⎤) + 2
 - (2 ⎡ log (n+1) ⎤ - n - 1)(⎡ log (n+1) ⎤- 1)

 = n ⎡ log (n+1)⎤ - 2 ⎡ log (n+1) ⎤ - n + ⎡ log (n+1) ⎤ + 1 .

CONCLUSIONS

What is crucial in the analysis of the algorithm is the
generation of the random sample. As mentioned in Frazer and
McKellar 1970, the objective is to generate a sample whose
cumulative distribution function provides an unbiased estimate
for the cumulative distribution function of the input sequence
and thus ensure that the probability distribution of Lemma 1 of
Frazer and McKellar 1970 is the appropriate one. But as
mentioned earlier, this random sample can be obtained without
additional comparison.

In this paper, we showed that the expected number of
comparisons of leapfrogging samplesort is estimated to be n ⎡
log (n+1)⎤ - 2 ⎡ log (n+1) ⎤ - n + ⎡ log (n+1) ⎤ + 1 comparisons.

The problem of analyzing the algorithm in terms of exact
number of comparisons on the average remains open.

REFERENCES

Albacea EA. Leapfrogging Samplesort, Proceedings of the 1st Asian Computing
Science Conference, in Lecture Notes in Computer Science. 1995; 1023:1-
9.

Chen JC. Proportion extend sort. SIAM Journal of Computing. 2001; 31(1):323-
330.

Chen JC. Efficient sample sort and the average case analysis of PEsort.
Theoretical Computer Science. 2006; 369:44-66.

Cole R, Kandathil DC. The average case analysis of partition sorts. in Proc of
European Symposium on Algorithms, Bergen, Norway, 2004.

Frazer WD, McKellar AC. Samplesort: A sampling approach to minimal storage
tree sorting. Journal of the ACM 1970; 17:496-507.

Hibbard TN. Some combinatorial properties of certain trees with applications to
searching and sorting. Journal of the ACM 1962; 9:13-28.

Hoare CAR. Quicksort. Computer Journal 1962; 5:10-15.

16 Philippine Science Letters Vol. 5 | No. 1 | 2012

