
he  leapfrogging  samplesort  was  introduced  in 
1995  but  was  not  analyzed  completely.  In  this 
paper,  we  analyze  the  algorithm  in  terms  of 
expected  number  of  comparisons.  In  particular, 
we  obtain  an  estimated  expected  number  of 

comparisons of n ⎡ log (n+1)⎤ - 2 ⎡ log  (n+1) ⎤ - n + ⎡ log (n+1) ⎤ 
+ 1 comparisons using the assumption that we estimate instead 
the cumulative distribution function of the input sequence from a 
sample. It should be noted that the results obtained in this paper 
is an estimate of the true expected number of comparisons. The 
problem of  getting  the  true  expected  number  of  comparisons 
remains open.
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INTRODUCTION

Quicksort (Hoare 1962) is considered one of the algorithms 
that requires a minimal number of comparisons on the average. 
Under  the  assumption  that  all  permutations  of  the  input  are 
equally likely, Hibbard 1962 showed that the expected number 

of comparisons using quicksort on an input sequence of size n is 
given  by  1.39(n+1)  log  n  -  2.85n  +  2.15 (All  logarithms 
throughout  this  paper  are  to  base  2,  unless  otherwise  stated 
explicitly.)  Frazer  and  McKellar  1970  improved  on  this  by 
introducing a samplesort algorithm that requires  n log n + O(n  
log log n) comparisons on the average. More lately, Chen 2001 
introduced PEsort which was analyzed by Cole and Kandathil 
2004 to require an average of n log n + O(n) comparisons. Cole 
and  Kandathil  2004  also  introduced  partition  sort  which  also 
requires  n log n + O(n) comparisons on the average.  Finally, 
Chen 2006 introduced another samplesort-based algorithm that 
also requires n log n + O(n) comparisons on the average. 

In  this paper,  we show analytically that  the leapfrogging 
samplesort  of  Albacea  1995  requires  an  estimated  n  ⎡ log 
(n+1)⎤ - 2 ⎡ log  (n+1) ⎤ - n + ⎡ log (n+1) ⎤ + 1 expected number of 
comparisons.  The  average-case  analysis  of  leapfrogging 
samplesort is very difficult to do, however, with the assumptions 
and  results  of  Frazer  and  McKellar  1970,  specifically  their 
Lemmas 1 and 2, we were able to finally give an estimate of the 
expected  number  of  comparisons  required  in  leapfrogging 
samplesort.

Leapfrogging Samplesort
Leapfrogging samplesort starts with  1 element and this is 

used as a sorted sample to partition the next 2 elements with the 
objective of producing a sorted sequence with 3 elements. Then, 
using the sorted 3 elements as a sample this is used to partition 
the next 4 elements in order to produce a sorted sequence with 7 
elements.  This is  repeated until  the whole sequence is  sorted. 
One will notice that if the size of the sample is  s, then this is 
used to partition the next s+1 elements.

Given a sorted sample of size s, the middle element of the 
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sorted sample, say v, is used to partition the next  s+1 unsorted 
elements. When partitioning, those elements in the unsorted part 
that are less than v are moved to the left and those greater than v 
are moved to the  right.  This  procedure is  called  the  Partition 
procedure.  Half of the sorted sample whose elements are greater 
than v are then moved to the left of the partition whose elements 
are  greater  than  v using  a  procedure  called  Move  Sample 
procedure. Thus, we produce two sets of elements, namely those 
greater than  v and those less than  v.  Each set is prefixed by a 
sorted sample whose size is half the original size of the sorted 
sample. The partitioning and moving of a sample are then called 
recursively on both sets of elements. 

An implementation  of   leapfrogging samplesort  is  given 
below.

void LFSamplesort(int first, int last)
{
    int s; 
    if (last > first) {
        s = 1; 
        while (s <= (last-first-s)) {
            Leapfrog(first, first+s-1, first+s+s);
            s += (s+1);
            }
        Leapfrog(first, first+s-1, last);
        }
}

void Leapfrog(int s1, int ss, int u)
{
    int i,j,k, sm, v,t;
    if (s1 > ss) LFSamplesort(ss+1, u);
    else
        if (u > ss) {
            sm = (s1+ss) / 2;
            /* Partition */ 
            v = A[sm];
             j = ss;
             for(i=ss+1; i <= u; i++) {
                 if (A[i] < v) {
                     j++;
                     t = A[j];
                     A[j] = A[i];
                     A[i] = t;
                     }
                 }
            /* Move Sample */
            if (j > ss) {
                for (k=j, i=ss; i >= sm; k- -, i- -) {
                    t = A[i];
                    A[i] = A[k];
                    A[k] = t;
                    }

                }
            Leapfrog(s1, sm-1,sm+j-ss-1);
            Leapfrog(sm+j-ss+1, j, u);
            }
}
 
It  is  worth  noting  that  the  stages  in  leapfrogging 

samplesort,  that  is,  a sorted sample is  inserted in an unsorted 
part, is exactly the same as the second stage of the samplesort 
algorithm of Frazer and McKellar 1970 where a sorted sample is 
inserted in the remaining unsorted elements.

Expected Number of Comparisons 
The analysis in terms of expected number of comparisons 

assumes that every time the algorithm is executed the elements 
of  the  sample  denoted  by  S,  which  are  used  to  partition  the 
unsorted  elements  U,  is  a  random  sample  of  (S  ∪ U).  The 
sampling approach used in the sorting algorithm of Frazer and 
McKellar 1970 could be used to insure that we have a random 
sample.  However,  note  that  this  assumption  can  easily  be 
incorporated  in  the  algorithm without  additional  comparisons. 
Assuming we have n = 2i -1 elements. First, we randomly choose 
a subset of size  2i-1-1 and place this in the first  2i-1-1 locations. 
Then, using this 2i-1-1 elements we randomly choose a subset of 
size 2i-2-1 and place this in the first 2i-2-1. We repeat this process 
until we have 3 elements where we choose a random sample of 
size 1 and place this in the first location. 

With this  assumption holding,  we can use the  following 
result of Frazer and McKellar 1970.

Lemma 1:  When inserting the  sample  S of  size  s to  an 
unsorted part  U of size  u, the expected number of elements in 
each partition is u/(s+1).

Proof: This is a consequence of Lemma 1 of Frazer and 
McKellar 1970.

Let S = {s1 , s2 , ..., ss } be a randomly chosen subset of S ∪ 
U numbered such that si < si+1. Let U = {u1, u2, ..., uu } be the set 
of unsorted elements with items numbered such that  ui < ui+1. 
When inserting the sample  S to set  U, this partitions the set  U 
into s+1 subsets, U0, U1, ..., Us, where:

U0  =  { u | u < s1 },
Ui  =   { u | si < u < si+1 }, 1 ≤  i < s, 
Us  =   { u | ss < u }. 

In Lemma 1, the number of elements in Ui, where 0 ≤ i ≤ s, 
is u/(s+1).

Lemma 2:  Leapfrogging samplesort  will partition with a 
pivot  element  an  unsorted  sequence  of  size  u using  u 
comparisons. 
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Proof:  This  is  obvious from the  part  of  the code where 
partitioning is done. Specifically, the following part of the code 
that does partitioning is the following: 

    /* Partition */ 
    v = A[sm];
    j = ss;
    for(i=ss+1; i <= u; i++) {
        if (A[i] < v) {
            j++;
            t = A[j];
            A[j] = A[i];
            A[i] = t;
            }
        }

Clearly, the for loop will iterate u times.  

Theorem  1:  The  expected  number  of  comparisons 
involved in leapfrogging samplesort is  n  ⎡ log (n+1)⎤ - 2  ⎡ log  

(n+1) ⎤- n + ⎡ log (n+1) ⎤ + 1  comparisons.

Proof: Consider one stage of the sorting process where the 
Leapfrog procedure is  given a sorted sample of size  s and an 
unsorted part of size s+1. This means that the input size is n = 
2s+1 = 2i-1, where i>0.

The sorting process will first use the middle (median) of 
the  sorted  sample  as  a  pivot  to  partition  the  s+1 unsorted 
elements and by Lemma 2 this will require s+1 comparisons. By 
Lemma 1, it is expected that the pivot element will divide the 
unsorted  s+1 elements  into  two equal  parts.  Then,  these  two 
equal unsorted parts are each partitioned using the first quarter 
and  third  quarter  elements  of  the  sorted  sample,  respectively. 
This process is repeated until there is only one element in the 
sorted part and two elements in the unsorted part. By Lemma 1 
after partitioning the unsorted part using all the elements of the 
sorted sample the expected size of each partition is 1. 

Let  C(2s+1) be  the  expected  number  of  comparisons 
required for executing the Leapfrog procedure on a sample of 
size s and unsorted part of size s+1. This gives

C(2s+1)   =    (s+1)+2  ((s+1)/2  )+4  ((s+1)/4  )+  ...  +  2log  (s+1)  –  1  

((s+1)/2log (s+1) – 1 ) 
               =   (s+1) log (s+1)

This is consistent with Lemma 2 of Frazer and McKellar 
1970.

Note that leapfrogging samplesort does sorting for a sorted 
sample  of  size  s=1  and  unsorted  part  of  size  s+1=2,  then 
repeated on sample size  s=3 and unsorted part of size  s+1=4, 
and so on until the sample of size s=2⎡log (n+1) ⎤ -1  -1 and unsorted 
part of size h where 1 ≤ h ≤ 2⎡ log (n+1)⎤ -1 .

Hence,  for  any  input  n,  the  whole  sorting  process  will 
require an expected  number of comparisons of

C(n)  =   2 log 2 + 4 log 4 + 8 log 8 + ... + h log 2⎡ log (n+1)⎤ - 1 

         =   2 log 2 + 4 log 4 + 8 log 8 + ... + 2⎡ log (n+1) ⎤ - 1  log 2⎡ log (n+1) ⎤ - 1 

                  - (2 ⎡ log (n+1) ⎤ -1 - h)( log 2 ⎡ log (n+1) ⎤ - 1)

        = 
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 i 2i - (2 ⎡ log (n+1) ⎤ -1 - h)( ⎡ log (n+1) ⎤ - 1)

        =  ⎡ log (n+1) ⎤  2 ⎡ log (n+1) ⎤ - 2(2 ⎡ log (n+1) ⎤ ) + 2
                  - (2 ⎡ log (n+1) ⎤ - 1  - ( n – 2 ⎡ log (n+1) ⎤ -1  +1 ))( ⎡ log (n+1) ⎤ - 1)

        =  ⎡ log (n+1) ⎤  2 ⎡ log (n+1) ⎤ - 2 (2 ⎡ log (n+1) ⎤ ) + 2
                  - (2 ⎡ log (n+1) ⎤ - n - 1)(⎡ log (n+1) ⎤- 1)

        = n ⎡ log (n+1)⎤ - 2 ⎡ log  (n+1) ⎤ - n + ⎡ log (n+1) ⎤ + 1 . 

CONCLUSIONS

What  is  crucial  in  the  analysis  of  the  algorithm  is  the 
generation of the random sample. As mentioned in Frazer and 
McKellar  1970,  the  objective  is  to  generate  a  sample  whose 
cumulative distribution function provides an unbiased estimate 
for  the cumulative distribution function of the input sequence 
and thus ensure that the probability distribution of Lemma 1 of 
Frazer  and  McKellar  1970  is  the  appropriate  one.  But  as 
mentioned earlier, this random sample can be obtained without 
additional comparison.

In  this  paper,  we  showed  that  the  expected  number  of 
comparisons of leapfrogging samplesort is estimated to be  n  ⎡ 
log (n+1)⎤ - 2 ⎡ log  (n+1) ⎤ - n + ⎡ log (n+1) ⎤ + 1  comparisons. 

The problem of analyzing the algorithm in terms of exact 
number of comparisons on the average remains open.
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