
e use Kuramoto’s parameter ρ to evaluate the 
phase synchronization of multichannel EEG 
records  at  different  frequency  bands  for 
thirteen human subjects under two behavioral 
conditions: eyes open resting and eyes closed 

resting.  We  report  three  findings:  (1)  with  eyes  open,  the 
dependence of  ρ  on frequency can be described by a 7 th order 
polynomial, and with the eyes closed, by a 6 th order polynomial; 
(2) for all frequency bands, pair-wise synchronization between 
channels  is  inversely  proportional  to  inter-electrode  distance; 
and  (3)  although  there  are  visible  differences  in  average 
synchronization  between  behavioral  conditions,  inter-subject 
variations  are  so  great  such  that  the  differences  are  not 
statistically significant.
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INTRODUCTION

The connectivity of the brain has long been an important 
focus of studies  of the human central  nervous system. Earlier 
work had concentrated on anatomical connectivity which traced 
how different regions are connected to each other by neuronal 
projections. These projections indicate which regions are capable 
of  directly  communicating  with  each  other  without,  however, 
providing information about actual patterns of communication in 
the functioning brain or about how these patterns change with 
changes in brain activity. Studies of functional connectivity seek 
to uncover and to understand these patterns.

Early  attempts  used  the  cross-correlation  coefficient  to 
measure linear correlations of EEG signals from different scalp 
sites (Imahori and Suhara 1949, cited by Gevins and Remond 
1987; Brazier and Casby 1952). Fraser and Swinney (1986) and 
Mars  and  Lopes  da  Silva  (1987)  later  showed  that  mutual 
information is capable of evaluating nonlinear correlations not 
detected by linear measures. This measure has since been used in 
similar contexts by others (Xu et al. 1997; Albano et al.  2000). 
Going beyond correlations,  causality measures  or measures of 
information  transfer  such  as  Granger  causality  (1969)  and 
transfer entropy (Schreiber 2000; Albano et al. 2008; Madulara 
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et al.  2012) show how one data stream influences the evolution 
of another. 

The frequency dependence  of  linear  correlations  is  often 
studied by means of spectral coherence, the Fourier transform of 
the covariance function (von Stein and Sarnthein 2000). Another 
approach, which we use here, is to subject the raw EEG signal to 
bandpass filters  and then study the correlations of  the filtered 
data.

The  measures  discussed  above  typically  evaluate 
relationships of the amplitudes of pairs of data streams. Instead 
of relying on amplitudes, one may instead associate phases with 
real-valued  signals  using,  say,  the  Hilbert  Transform (Hahn 
1996; King 2009).  The synchronization of the phases of multi-
channel data may then be calculated. Kuramoto’s parameter,  ρ 
(see  below), is  a  particularly  useful  measure  of  the  all-to-all 
phase  synchronization  of  these  data  (Kuramoto  1975,  1984; 
Sakaguchi  and  Kuramoto  1986;  Strogatz 
2000; Acebrón et al. 2005).

Using  Kuramoto’s  ρ we  investigate 
the dependence on frequency and on inter-
electrode  distance  of  the  phase 
synchronization  of  10-channel,  free-
running  EEG  for  two  behavioral 
conditions:  eyes  closed  resting  and  eyes 
open resting. This gives us the opportunity 
to  compare  spontaneous  synchronization 
of  the  different  brain  regions  when  the 
visual system is activated to that when it is 
not.  This  is  to  be  contrasted  with  the 
approach of  some previous works  which 
studied the amplitude correlations of EEG 
when subjects were performing tasks that 
are  thought  to  involve  a  variety  of 
neuronal  assemblies  (e.g.,  von Stein  and 
Sarnthein 2000).

We  find  that  (1)  phase 
synchronization  is  a  rather  complicated 
function  of  frequency,  best  represented, 
for the eyes open and eyes closed cases, 
by  7th and  6th order  polynomials, 
respectively;  (2)  on  average,  for  all 
frequency  bands,  ρ  is  inversely 
proportional  to  inter-electrode  distance; 
and  (3)  although  values  of  ρ  averaged 
over  all  subjects  show  systematic 
differences  for  the  two  behavioral 
conditions, inter-subject variations in each 
condition  are  so  great  that  there  are  no 
statistically  significant  differences  in 
synchronization  among  the  different 
frequency  bands  for  each  condition. 
Neither are there significant differences in 

synchronization between conditions.

FREQUENCY  BANDS,  FILTERING,  AND  PHASE 
SYNCHRONIZATION

Electroencephalographic frequency bands

The  frequencies  of  EEG signals  usually  range  from less 
than 1 to about 60 Hz, and have amplitudes that range from 29 to 
100μV. In the state of consciousness, EEG waves have certain 
characteristic  patterns  at  the  highest  state  of  alertness,  when 
sensory input is at the greatest; the waves are of high frequency 
and low amplitude. At the opposite end of the alertness scale, a 
synchronized EEG has the characteristics of low frequency and 
high amplitude.

EEG  wave  patterns  are  classified  according  to  their 
frequency,  f, each frequency band having its own physiological 
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Figure 1. A. Polynomial fits for the frequency dependence of the mean Kuramoto 
parameter, ρ, for eyes closed (left panel)and eyes open (right panel) conditions. 
B. Polynomial fits (with error bars) for the frequency dependence of the mean 
Kuramoto parameter,  ρ, for eyes closed (left panel)and eyes open (right panel) 
conditions.

A

B



significance (Ebersole and Pedley 2003)

 Delta  ( )4: f Hzδ ≤ .  These  frequencies  are 
characteristic of deep sleep stages.

 Theta  ( )4 8: f Hzθ < < .  It  is seen normally in 
young children. It  may be seen in drowsiness or 
arousal in older children and adults. In the awake 
adult,  high  theta  activity is  considered abnormal 
and it is related to different brain disorders.

 Alpha  ( )8 12: f Hzα ≤ ≤ .  Hans  Berger  named 
the  first  rhythmic  EEG  activity  he  saw  as  the 
“alpha wave”. They are best seen with eyes closed 
and are most pronounced in occipital locations.

 Beta  ( )12 30: f Hzβ < < . They are best defined 
in  central  and  frontal  locations.  They  have  less 
amplitude than alpha waves and they are enhanced 
upon expectancy states or tension.

 Gamma  ( )30: f Hzγ ≥ .  Gamma  rhythms 
represent  binding  of  different  populations  of 
neurons together into a network for the purpose of 
carrying out a certain cognitive or motor function.

Filtering

The contributions of the frequency bands described above 
as well as those of more evenly spaced bands which are more 
useful  in  studying  the  frequency dependence  of  the  EEG are 
extracted from the recorded signals by digital, Fourier transform 
(FFT)-based band-pass filters (see, e.g., Press et al. 2002). The 
filter function we used was an unnormalized Gaussian centered 
at  the  mid-point  of  the  passband;  the  filter  cutoffs  were  at 
frequencies  corresponding to  the  half-maximum points  of  the 
filter function.

Hilbert Transform and Kuramoto Model

Phases  can  be  associated  with  a  real  function,  x(t),  by 
means of the Hilbert Transform, h(t), defined by

PV means the principal value of the integral. The functions, 
x(t)  and  h(t),  are  the  real  and  imaginary  parts  of  a  complex 
function, f(t):

Hence, to each real function of time, x(t), we can associate 
the phases, 

  

For a multi-channel signal consisting of  K  channels, each 
channel having N elements, xm(k), m = 1, 2, …, K;  k = 1, 2, …,  
N,   we  use  discrete-time  versions  of  the  above  equations  to 
define  K sets  of  phases,   φm(k).  Here,  k is  the  discrete  time 
variable. 

Define ρ(k) and ψ(k) in terms of the phases, φ(k):

ρ(k)  provides  a  measure  of  the  instantaneous 
synchronization  of  the  signals.  Kuramoto’s  parameter,  ρ,  a 
measure of the synchronization of the K signals during the entire 
time N spanned by the signals, is defined as the average of the ρ 
(k)
’s:

DATA ACQUISITION

The data used in this study were obtained by Watanabe in 
1999 and 2000 using Instep (Watanabe et al. 2003). EEG signals 
were recorded from 16 channels referenced to linked earlobes. 
Table  1  shows  the  channel  numbers  and  the  corresponding 
location on the head as specified by the 10-20 system. Vertical 
and horizontal eye movements were recorded, respectively, from 
electrode  sites  above  and  below  the  right  eye  from near  the 
canthi  of  each  eye.  Since  the  physical  pattern  of  anatomical 
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connections  is  relatively  stable  at  shorter  time 
scales,  each  data  file  was  taken  no  more  than 
twelve  seconds  long.  Artifact-corrupted  records 
were  removed  from  the  analyses.  Electrical 
impedances  were  all  less  than  5Kohm.  Signals 
were amplified with a gain of 18000 and amplifier 
cut-off  settings  of  0.03  Hz  and  200  Hz.  Signals 
were  digitized  at  1024  Hz  using  a  twelve-bit 
digitizer.

Thirteen healthy  adults  participated  in  the 
study.  The  EEG  data  were  obtained  under  two 
conditions:  eyes-closed  resting  and  eyes-open 
resting.  Continuous  artifact-free  records  were 
obtained from each subject  in the two conditions 
(eyes  open and eyes closed).  However,  since the 
electrocap gave poor quality data in some channels, 
only ten channels were used in the study (see Table 
1).

Table 1 shows 16 channels even though only 
ten are used in the calculations. 

RESULTS AND DISCUSSIONS

Frequency dependence of phase synchronization

The clinically defined frequency bands are of 
such disparate sizes that they are not well-suited to 
study  the  frequency  dependence  of  ρ. 
Consequently,  we subdivided the frequency range 
of 0 to 100 Hz into twelve bands, keeping the delta, 
theta and alpha bands intact,  but  subdividing the 
beta  and  gamma  bands  essentially  into  10-Hz 
intervals to get the following: 

 δ (0-4 Hz), θ (4-7 Hz), α (8-12 Hz),β1 (12-20 
Hz), β2 (20-30 Hz), γ1 (30-40 Hz), γ2 (40-50 Hz), 
γ3 (50-60 Hz),  γ4 (60-70 Hz),  γ5 (70-80 Hz),  γ6 
(80-90  Hz)  and  γ7  (90-100  Hz).  We  (1)  used 
bandpass filters to extract the contribution of each 
of these bands,  (2)  calculated the phases  of each 
filtered signal using the Hilbert transform, and then 
(3) used these phases to calculate Kuramoto’s  ρ. 

In Figure 1, the open circles on the left panel 
show the values of ρ averaged over all subjects for 
the eyes open condition; those on the right panel 
show average values for the eyes closed condition. 
The rather complex functional dependence of ρ on 
frequency  can  be  fitted  by  a  seventh-order 
polynomial  for  eyes  open,  and  by  a  sixth  order 
polynomial for eyes closed. In both of these cases, 
the  best  fit  is  that  which  minimizes  the  mean 
square difference between the data and the fitting 
polynomial.
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Figure 2.  Scatter plot of mean Kuramoto’s  ρ vs. distance for all 
channel pairs under eyes closed condition. Top row, left to right: δ, 
θ, α. Bottom row, left to right: β, γ.

Figure 3.  Same as Figure 2 but for eyes open.



For eyes open, the best fit is given by:

where x represents the midpoint of the frequency band and ŷ  is 
the predicted Kuramoto’s  ρ.  For the eyes closed condition the 
curve that gives the best fit has the equation

                   

The graphs for these polynomials are shown by the smooth 
curves in each panel of  Figure 1.

Correlation  between  inter-electrode  distances  and 
Kuramoto’s parameter

To investigate the dependence of ρ on 
inter-electrode distance, we calculated the 
parameter  at  each  of  the  five  clinical 
frequency bands for all channel pairs and 
averaged  these  over  all  subjects.  In  the 
absence of inter-electrode distance data for 
each  of  the  subjects,  we  measured  the 
distance  between  each  of  the  forty-five 
pairs  of  10-20  electrode  locations  on  an 
adult human head (Table 2). Although the 
source of the inter-electrode distances was 
not one of the subjects who provided the 
EEG data, we believe that the distances we 
used  provide  at  least  a  reasonable 
approximation  of  the  average  inter-
electrode distances among the subjects of 
the EEG study.

The  values  of  Kuramoto’s  ρ of 
electrode  pairs  with  the  same  distances 
were averaged for both conditions at each 
frequency band. For each of the frequency 
bands, the scatter plots of  ρ vs. frequency 
for all electrode pairs are shown in Figures 
2 and 3. These figures also show regression 
lines,  the  cross  correlation  coefficient 
(Pearson’s  r)  between  inter-electrode 
distance  and  the  mean  Kuramoto’s 
parameter, and the regression equations. 

Figures  2  and  3  show  that  distance 
between electrodes is negatively correlated 
with  phase  synchronization.  The  test  for 
significance  showed  that  the  correlation 
coefficients are statistically significant for 
both  conditions  in  the  five  frequency 
bands. Correlation analysis showed that in 
the eyes closed condition in the delta band, 
(r  = -0.674,  p = 0.002);  theta band,  (r = 
-0.776,   p  <  0.001);  alpha  band,  (r  =  - 
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Figure 4.  Cross-correlation coefficients of  ρ and inter-electrode distance vs.  
frequency.

Figure 5.  Mean Kuramoto’s  ρ vs.  frequency for eyes closed and eyes open 
conditions. Left panel uses physiological frequency bands; right panel uses an 
expanded number of bands for greater resolution.



0.790, p < .001), beta, (r = -0.752, p < 0.001) and gamma, (r = 
-0.753, p < .001). On the other hand, in the eyes open condition 
at the delta band,   (r = -0.611,  p = 0.005); theta band, (r = - 
0.520,  p =  0.002);  alpha,  (r =  -0.514,  p =  0.024);  beta,  (r = 
-0.620, p = 0.005); and gamma band, (r = -0.663, p = 0.002)

Figure 4 shows the cross-correlation coefficients of  ρ and 
inter-electrode distance vs.  frequency.  This graph reveals that 
the  anticorrelation  between  inter-electrode  distance  and 
Kuramoto’s parameter is consistently greater in the eyes closed 
condition. The greatest anticorrelation occurs at the alpha band 
in the eyes closed condition; the lowest occurs in this band in the 
eyes open condition.  The t-test shows that in the eyes closed 
condition, the signals are significantly more anticorrelated with 
inter-electrode distance than those in the eyes open condition (t = 
-.491,  p =  .003).  Activation  of  the  visual  system  apparently 
makes  phase  synchronization  between  brain  regions  less 
dependent on the distance between the regions.

Mean  Phase  Synchronization  in  the  Different  Frequency 
Bands

The mean phase synchronization was computed by taking 
the  average  of  Kuramoto’s  parameter  in  all  thirteen  subjects. 
Figure  5 (left  panel)  shows an  error  bar  chart  of  the average 
Kuramoto’s  parameter  for  the  five  frequency  bands.  Visual 
inspection of the figure shows that mean 
Kuramoto’s ρ in the eyes-closed condition 
is higher compared to eyes-open condition 
for all frequency bands. It also shows that 
the  highest  mean  phase  synchronization 
occurs  in  the  delta  band  in  both 
conditions.  Along  this  vein,  while 
Kuramoto’s  ρ is  sensitive  to  change 
between the eyes open versus eyes closed 
conditions  for  all  frequency  bands,  the 
differences as assessed by a t-test showed 
that  this  difference  is  not  statistically 
significant for the five different frequency 
bands.  That  is,  at  delta,  (t =  0.706,  p = 
0.487); theta, (t = 0.620, p = 0.541); alpha, 
(t = 0.590, p = 0.561); beta, (t = 0.702, p = 
0  .490);  and  gamma,  (t =  1.090,  p = 
0.286).  The graph also shows that  in the 
different  frequency  bands  mean  phase 
synchronization  showed  different  values. 
It can be seen that in both conditions the 
highest  mean  phase  synchronization 
occurs at the delta band. The differences in 
the  mean  phase  synchronization  in  the 
different  frequency  bands  was  assessed 
using  one-way  ANOVA  .The  results 
showed  that  these  differences  are  not 
statistically significant for the eyes-closed 
condition  (F(4,60)  =  0.214,  p  =  0  .930) 
and in the eyes-open condition F(4,60) = 0 
.165, p = 0 .955)

A similar  analysis  using  the  frequency  bands  used  for 
evaluating  frequency dependence  is  shown on  the  right  hand 
panel of Figure 5 and yields the same results. While there are 
clearly  visible  differences  between  frequency  bands  for  each 
condition  and  even  larger  differences  between  conditions, 
statistical analysis shows that, most likely because of large inter-
subject variations, these differences are not significant.

CONCLUSIONS

This study revealed that phase synchrony of EEG signals 
measured  at  different  scalp  sites  as  quantified  by Kuramoto’s 
parameter,  ρ,  has  a  rather  complicated frequency dependence, 
and  that  this  dependence  changes  when  the  visual  system  is 
activated.  With  the  eyes  closed,  the  frequency dependence  is 
described by a 6th order polynomial; with the eyes open, by a 7th 

order polynomial. In general, the phase synchronization between 
electrode  sites  is  inversely  proportional  to  the  inter-electrode 
distance. The anticorrelation between phase synchronization and 
inter-electrode distance is greater when the visual system is not 
activated. There are noticeable differences in the average phase 
synchronization  patterns  between  eyes  open  and  eyes  closed 
conditions, but inter-subject variations in this study were so great 
that the differences were not statistically significant.

The results of Figure 2 and Figure 3 obtained with these 
data indicate that synchronization as assessed by the Kuramoto 
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Table  1.  Electrode  locations  with  corresponding  channel  numbers.  Only 
Channels 2 – 11 were used.

Table 2.  Inter-channel distances between all channel pairs used in this study.



order parameter decreases with distance for all frequency bands. 
Prior research on frequency-distance relationships in the central 
nervous  system indicates  that  high  frequency synchronization 
organizes local networks, while low frequency synchronization 
organizes  long  distance  interactions  (von  Stein  and  Sarnthein 
2000; Buzsáki and Draguhn 2004; Penttonen and Buzsáki 2003). 
These observations are consistent  with theoretical  calculations 
performed  by  Kopell  et  al.  (2000).  That  analysis  found  that 
different  frequency  oscillations  use  different  dynamical 
mechanisms  to  synchronize.  Beta  frequency oscillations,  they 
concluded,  synchronize  over  longer  distances,  and  gamma 
frequency oscillations synchronize over shorter distances. These 
previous  theoretical  and  experimental  results  would  therefore 
seem to be at  variance with the results presented here,  which 
show  synchronization  decreasing  with  distance  over  all 
frequency bands. We think it possible that this difference results 
from examining free running EEGs, as is done here, in contrast 
with examining event-related potentials, ERPs, as was done for 
example  by  von  Stein  and  Sarnthein  (2000).  Event-related 
potentials are electrical signals that are elicited by defined brief 
stimuli.  The  stimulus  engages  the  CNS  is  a  reproducible 
perceptual and cognitive task, and focuses CNS activity in a way 
that  permits  stimulus-specific  resolution  of  frequency-distance 
relationships.

This  argues  for  the  application  of  the  Kuramoto  order 
parameter  to  the analysis  of  event-related potentials.  The first 
step  of  the  analysis  would  be  the  identification  of  transient 
functional networks formed in response to the stimulus. Several 
methods  can  be  used  to  identify  functional  networks  in 
multichannel EEG/ERP data. Linear and nonlinear time domain 
measures can be used (Bonita et al. 2012), but since the object of 
the  study  is  to  examine  frequency  relationships,  frequency 
domain  measures  of  functional  connectivity  would  be  more 
appropriate.  Frequency  domain  measures  of  functional 
connectivity include coherence (Nunez et al. 1997, 1999; though 
previously reported problems with the calculation of coherence 
(Schiff  2005;  Guevara  et  al.  2005)  should  be  noted),  phase 
locking  index  (Hurtado  et  al.  2004;  Sazonov  et  al.  2009), 
imaginary coherency (Stam et al. 2007; Nolte et al. 2004), and 
phase lag index (Stam et al. 2007, 2009). The search for transient 
functional networks should be repeated in each frequency band. 
Stimulus-dependent  Kuramoto  order  parameters  can  then  be 
computed  within  the  networks  identified  by  the  preceding 
functional connectivity analysis.
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