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ue to the significance of protein-protein interactions 
(PPIs) in regulating many significant cellular 
functions, many studies have focused on detecting 
protein complexes within PPI networks (PPINs) 
using computational methods. While a number of 

these methods are based on graph clustering, experimental 
studies have revealed that several relevant biological insights 
about protein complexes are not reflected in these methods. This 
paper proposes an algorithm that combines an extension of the 
Markov cluster algorithm (MCL), called the MLR-MCL with 
balance, and a core-attachment scheme to cluster PPINs. This 
algorithm was run on the BioGRID and DIP yeast PPI networks, 
and the output clusters were compared against the CYC2008 
protein complex data (Pu et al 2009) by computing F-scores for 
the predicted complexes. The clustering results showed an 
improvement in average F-scores between 25.6% to 153.3% 
with respect to those resulting from clustering done on two 
datasets, as compared to three other clustering algorithms. Also, 
the proposed algorithm yielded an improvement of 59.1% for 
BioGRID and 81.4% for DIP dataset, as compared to original 
MLR-MCL with balance. These values reflect the positive effect 
of applying biological information to a pure, graph-theoretic 
clustering algorithm. 
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INTRODUCTION 
 
Cellular functions and biochemical events involve complicated 
interactions among proteins, which is commonly referred to as 
protein-protein interactions (PPIs). These proteins then 
aggregate to form larger macromolecules, called complexes, to 
regulate specific molecular responses under various 
physiological conditions. Identifying and characterizing protein 
complexes from PPI networks (PPINs) are very important in 
understanding biomolecular processes and organization since it 
helps reveal the structure-function relationships among 
complexes. 
 
High-throughput experimental methods have produced a large 
amount of protein interaction data, which makes it possible to 
predict complexes from protein-protein interaction networks. 
However, the relatively small amount of known physical 
interactions and noisy experimental data may limit complex 
detection. 
 
Many computational methods that are developed for protein 
complex detection on PPINs are mainly based on graph 
clustering (Bader and Hogue 2003, van Dongen 2000,  Liu et al. 
2009, Nepusz et al. 2012, Chua et al. 2008), which rely solely 
on the topology of the PPI network. A popular method, called 
the Markov Clustering Algorithm (MCL), was developed by 
Van Dongen in 2000 (van Dongen 2000, Enright et al. 2002) 
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based on simulating a random walk on a PPIN. Due to its 
robustness, many extensions have been produced from this 
method. One of its variants is MLR-MCL with balance, which 
is a multi-level, regularized algorithm that uses a balance 
parameter to even out the sizes of output clusters (Satuluri et al. 
2010). A discussion on this algorithm is presented on Section 2. 
Despite progress in protein complex detection, it is a great 
challenge to effectively analyze the massive data for biologically 
meaningful protein complex detection. More recent studies on 
protein complex detection focused on applying biological 
insights into existing graph-theoretic methods. Srihari and others 
have surveyed a variety of these methods, and discussed that 
incorporating biological information in network mining 
improved the performance of the methods (Srihari et al. 2015).  
One finding pertains to the inherent organization of the 
complexes in the network. Many studies assume protein 
complexes to be dense subgraphs, since most complexes involve 
multiple interacting proteins to perform specific functions (Pu et 
al. 2009, Becker et al. 2012). However, studies have revealed 
that some of these complexes share the same proteins, i.e. have 
overlapping regions (Palla et al. 2005). These overlapping 
complexes are not usually captured by some clustering methods, 
such as MCL (van Dongen 2000), which yields tree clusters, and 
MCODE (Bader and Hogue 2003), which yield highly dense but 
disjoint complexes. These methods classify closely related 
complexes, which share a significant amount of proteins, as a 
whole when they share many nodes in the network. This 
problem is called the “soft clustering problem” in graph theory. 
In 2006, Gavin and others proposed that there are two 
components in every complex: a set of core proteins and 
attachments (Gavin et al. 2006). Core proteins are central to each 
complex, with relatively more interactions among themselves, 
while attachment proteins bind to the core proteins and may 
appear in several complexes. These attachment proteins assist 
the complex core to perform secondary functions. This idea of 
biological organization in the PPI network defines the 
framework that will be called core-attachment structure in the 
paper. 
 
Several papers used the concept of core-attachment structure in 
computational protein complex detection (Wu et al. 2009, 
Srihari et al. 2010, Srihari et al. 2015). The results of these 
studies show that applying this idea in graph clustering improves 
its predictive performance, in terms of cluster coverage and 
sensitivity, as compared to the pure graph-theoretic algorithms. 
This study aims to combine the performance of MLR-MCL with 
balance algorithm with the core-attachment structure to produce 
a hybrid method to improve clustering efficiency, with the 
further intent of observing the effects of incorporating biological 
information to existing graph-theoretic methods. 
 
PRELIMINARIES 
 
A. Graph Theory 
The network of interactions between proteins (which is also 
referred to as a PPI network) can be represented by an undirected 
graph 𝐺 = 𝑉, 𝐸  excluding self-loops, where 𝑉  be the set of 
vertices, 𝐸 ⊆ 𝑉×𝑉 be the set of edges, with each edge 𝑣), 𝑣* ,
𝑣), 𝑣* ∈ 𝑉, and suppose 𝑉 = 𝑛. The set 𝑉 represents the set of 
distinct proteins and 𝐸  the set of known interactions between 
two proteins. In this paper, it is assumed that multiple 
interactions between the same pair of proteins and transient 
interactions among the proteins are not considered in the 
construction of the PPI network. 
 
A protein complex is a set of proteins in 𝑉 bound together to 
form a stable structure. In other words, the proteins in the 
complex, with their interactions, form a subgraph of the PPI 

network. However, not all subgraphs in the PPI network are 
relevant complexes. 
 
Define 𝑤:	𝑉×𝑉 → ℝ23 to be the weight function of the graph 𝐺, 
where 𝑤 𝑣), 𝑣* > 0  if 𝑣), 𝑣* ∈ 𝐸	 and 𝑤 𝑣), 𝑣* = 0  if 
𝑣), 𝑣* ∉ 𝐸. This mapping represents the confidence level of 

the interaction of a PPI network. 
 
Let 𝐴 ∈ 𝑀9(ℝ)  be the (weighted) adjacency matrix 
corresponding to 𝐺, such that 

𝐴)* =
𝑤(𝑣), 𝑣*) (𝑣), 𝑣*) ∈ 𝐸

0 otherwise.
 

 
Define 𝑀 ∈ 𝑀9(ℝ) to be the canonical transition matrix, which 
is a column-stochastic matrix, i.e., for every column 𝑗 ,  
𝑀)* = 1.)  This represents the matrix of transition probabilities 

of a random walk (or a Markov chain) defined on 𝐺, with 𝑀)* 
being the transition probability from 𝑣)  to 𝑣*  (with 𝑀*) = 𝑀)* 
since 𝐺 is undirected).  
 
B. The Markov Cluster Algorithm and its Variants 
The Markov cluster algorithm (MCL) is a clustering method 
based on a simulation of stochastic flows on the graph (van 
Dongen 2000). The algorithm simulates random walks on the 
graph, in which it enhances the flows that tend to gather, and 
then yields resulting clusters on the graph. This amplification is 
done based on the idea that there are more paths between two 
nodes in a cluster than between those in different clusters (van 
Dongen 2000). Thus, from any given node, there is a higher 
probability of “walking” to a node within a cluster than to a node 
in another cluster. 
 
The MCL process consists of two operations on stochastic 
matrices, referred to as 𝐸𝑥𝑝𝑎𝑛𝑑 and 𝐼𝑛𝑓𝑙𝑎𝑡𝑒. The 𝐸𝑥𝑝𝑎𝑛𝑑 step 
spreads the flow out of a vertex to potentially new vertices and 
also enhances the flow to those vertices which are reachable by 
multiple paths, which has the effect of strengthening intra-
cluster flows. The 𝐼𝑛𝑓𝑙𝑎𝑡𝑒 step introduces a nonlinearity into 
the process, with the purpose of enhancing intra-cluster flow and 
weakening inter-cluster flow. Thus, given a canonical flow 
matrix 𝑀,  

𝐸𝑥𝑝𝑎𝑛𝑑 𝑀 = 𝑀 ∗ 𝑀 , and 
𝐼𝑛𝑓𝑙𝑎𝑡𝑒	(𝑀, 𝑟)[𝑖, 𝑗] = (UVW)X

(𝑀𝑘𝑗)
𝑟𝑛

𝑘=1
, 

with 𝑟 > 1, 𝑟 ∈ ℝ . These two operators are applied in 
alternation iteratively, starting with the canonical flow matrix. 
 
Because of its speed and scalability, many variants of MCL have 
been developed with the aim of producing more accurate 
clustering results with respect to experimentally-curated 
clusters. One variant is the Regularized MCL (R-MCL) 
algorithm, in which the 𝐸𝑥𝑝𝑎𝑛𝑑  step is replaced by the 
operation 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒 𝑀 = 𝑀 ∙ 𝑀_ , where 𝑀_ ∈ 𝑀9(ℝ)  is 
the original matrix of transition probabilities (Satuluri and 
Parthasarathy 2009), given by 

𝑀_ 𝑖, 𝑗 =
𝐴)*
𝐴𝑘𝑗𝑛

𝑘=1
, 

where 𝐴 ∈ 𝑀9(ℝ)  is the adjacency matrix of the graph. This 
approach uses the original topology of the graph to influence the 
clustering results throughout all iterations, and not just during 
the first iteration. 
 
An extension of R-MCL, called MLR-MCL, embeds the former 
within a multi-level framework (Satuluri and Parthasarathy 
2009). In this algorithm, the input graph is successively 
coarsened into a chain of smaller graphs, until a sufficiently 
small graph is obtained. A few iterations of R-MCL are run on 
the coarsest graph, and the flow matrix at the end of these few 
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iterations is used to initialize a few iterations of R-MCL on the 
next bigger graph, and so on up the chain of graphs until the 
original graph is reached, and the clusters are returned. It has 
been observed that MLR-MCL has faster execution time than 
both R-MCL and MCL, as running the process first on smaller 
graphs is faster and the flow matrix is sparse by the time it 
proceeds to the bigger graphs, leading to smaller matrix 
multiplications. 
 
An improvement of MLR-MCL, which incorporates adjustable 
balance, has been proposed to address the skewed clustering 
results produced by the original MCL algorithm (Satuluri et al. 
2010). Instead of using 𝑀_  in the R-MCL step, a different 
matrix, 𝑀`, is used. The matrix 𝑀` is formed using a penalized 
𝑀_ , which is penalized in a way that nodes will be likely to join 
a smaller cluster, thus balancing out cluster sizes. The reader is 
referred to (Satuluri et al. 2010) for the full details of the MLR-
MCL algorithm. 
 
C. Core-Attachment Structure 
Most of the available protein complex detection algorithms are 
based on the assumption that densely connected proteins, i.e., 
dense subgraphs, correspond to complexes in the PPIN. 
However, these methods fail to consider the inherent 
organization among protein complexes and the roles of the edges 
in it.  
 
Core-attachment structure is a framework that many researchers 
have utilized for designing and improving methods for PPIN 
clustering, and describes the protein complex organization based 
on the analysis of experimentally detected protein complexes 
(Dezso et al. 2003, Gavin et al. 2006).  It observes that a protein 
complex consists of a core, which contains proteins that are 
highly co-expressed and with strong functional similarity, and 
attachments to the core, which are other proteins within the 
complex that help the core proteins carry out their functions. It 
also implies that protein complexes can share attachment 
proteins.  
 
The core-attachment structure anchors mainly on three 
properties (Gavin et al. 2006): 

1. the core proteins of a complex constitute a subgraph 
of the PPI network, with relatively high node degree 
among themselves, 

2. every set of core proteins are disjoint, and 
3. if an attachment protein is linked to a subset of core 

proteins, the attachment protein will be a common 
neighbor of the subset of core proteins it is connected 
to in the PPI network. 

 
One of the methods that use core-attachment structure for 
protein complex detection is MCL-CAw (Srihari et al. 2010), 
which initially runs MCL on a weighted PPI network and then 
refines the resulting clusters by identifying the core proteins and 
attachment proteins within each cluster. For each cluster, core 
proteins are first identified by considering three measures:  
weighted in-connectivity of a protein, weighted out-connectivity 
of a protein, and average weighted in-connectivity of the cluster 
a protein belongs to. Weighted in-connectivity specifically 
refers to the sum of a protein’s interactions with respect to the 
other proteins within its cluster, while weighted out-connectivity 
refers to the sum of a protein’s interactions with respect to other 
proteins outside of its cluster. Moreover, the average weighted 

in-connectivity refers to the average of the weighted in-
connectivities of every protein within the cluster. Given a 
protein 𝑝  and a cluster 𝐶) = 𝑉), 𝐸) , 𝑉) ⊆ 𝑉, 𝐸) ⊆ 𝐸 , the 
weighted in-connectivity 𝑑)9 , weighted out-connectivity 𝑑bcd , 
and average weighted in-connectivity 𝑑efg , are respectively 
given by the formulae 

𝑑)9 𝑝, 𝐶) = 𝑤 𝑝, 𝑞
i∈jV

, 

𝑑bcd 𝑝, 𝐶) = 𝑤 𝑝, 𝑞
i∉jV

, 

 

𝑑efg 𝐶) =
[𝑑)9 𝑞, 𝐶) ]i∈jV
𝐶)

. 

 
For a protein to be considered a core protein, its weighted in-
connectivity must be greater than its weighted out-connectivity, 
and its weighted in-connectivity must be greater than or equal 
to the average weighted in-connectivity of its cluster.  
 
Non-core proteins are then classified as attachments to the 
cluster by the following criterion: 

𝐼k ≥ 𝛼 ⋅ 𝐼o
𝑆o
2

rs
 

where 𝐼k	is the sum of all interactions of a protein with respect 
to the core proteins, 𝐼o	is the sum of all interactions among the 
core proteins of the cluster, and 𝑆o  is the number of core proteins 
in the cluster.  The user-defined parameters 𝛼 and 𝛾	control the 
effects of the total weight of interactions among the core proteins 
of a donor cluster and the number of core proteins of a donor 
cluster, respectively.  The final set of complexes is the merged 
set of cores and attachments, as obtained above. 
 
The pseudocode of the core-attachment structure is presented in 
Algorithm B1 found in the Supplementary Information. The 
reader is referred to (Srihari et al. 2010) for the full discussion 
on the scheme used in this paper. 
 
D. Functional Similarity as Interaction Reliability Metric 
The reliability of protein interactions in a PPIN can be expressed 
as an assignment of weights to protein pairs that reflect how 
likely they will interact with each other, given the topological 
characteristics of the network and/or other external information. 
The score is directly proportional to the likelihood of interaction 
between a pair of proteins. 
 
The functional similarity (FS)-weighting method is based on the 
observation that the similarity of function between two proteins 
is highly correlated with the number of interaction partners they 
have in common (Chua et al. 2008).  FS-weighting assumes that 
proteins can share the same function in two ways: proteins can 
either interact directly to perform common functions (hence, 
they have direct functional associations), or indirectly by having 
many common interaction partners. In other words, if two 
proteins do not directly interact but do with many other common 
proteins, it is highly likely that they share similar physical or 
biochemical characteristics, and therefore share the same 
functions as well (Chua et al. 2006). 
 
The FS-weight between two proteins 𝑣) and 𝑣* is given by the 
formula (Chua et al. 2008): 

𝑤uv 𝑣), 𝑣* =
2 𝑁fV	 ∩ 𝑁fW

𝑁fV − 	𝑁fW + 	2 𝑁fV	 ∩ 𝑁fW + 𝜆fV,fW
×

2 𝑁fV	 ∩ 𝑁fW
𝑁fW − 	𝑁fV + 	2 𝑁fV	 ∩ 𝑁fW + 𝜆fW,fV

,	
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where 𝑁f is the set that contains the protein 𝑣	and the proteins it 
directly interacts with.  Also, 𝜆fV,fW   is given by 

𝜆fV,fW = max 	 0, 𝑛efg − 𝑁fV − 𝑁fW + 𝑁fV ∩ 𝑁fW ,	
where 𝑛efg  refers to the average number of neighbors per 
protein in the network. 
 
In this paper, the weights are bounded by a threshold parameter 
𝜏, wherein interactions whose weights fall below the threshold 
value are removed from the network. This filtering is usually 
applied to reduce noise related to indirect interactions among 
proteins. The pseudocode for weighting process used in this 
paper is detailed in Algorithm A1 found in the Supplementary 
Information. 
 
E. The Algorithm 
The hybrid algorithm, composed of MLR-MCL with balance 
(Satuluri et al. 2010) and an adapted core-attachment structure 
from (Srihari et al. 2010), is presented in Algorithm 1. This 
consists of three phases: (1) a preprocessing step, where the 
(weighted) adjacency matrix 𝐴 is constructed, with respect to 
the FS-weighting formula in Section 2.3. This is followed by (2) 
a clustering step, where the (weighted) adjacency matrix is using 
the MLR-MCL with balance algorithm in (Satuluri et al. 2010). 
The resulting clusters are further refined in (3), by using the 
core-attachment structure algorithm in (Srihari et al. 2010), in 
which the pseudocode is presented in Algorithm B1 found in the 
Supplementary Information. 
 

 
 
MATERIALS AND METHODS 
 
This section details the properties of the two yeast PPINs used 
in this study, as well as cluster quality metrics to determine the 
relative performance of the proposed algorithm, in comparison 
to other clustering algorithms. 
 
A. Experimental Setup 
The algorithm was run on two Saccharomyces cerevisiae PPI 
networks, namely Biological General Repository for Interaction 
Datasets (BioGRID) version 3.1.81 (Stark et al 2011) and 
Database of Interacting Proteins (DIP) version October 27, 2011 
(Salwinski et al 2004). The DIP dataset, with 4,995 nodes and 
21,875 interactions, contains data from genome-wide yeast two-
hybrid screens. Meanwhile, for the BioGRID dataset, which 
includes 4,364 nodes and 25,464 interactions, only data from 
low-throughput experiments were considered as these 
interactions have higher precision (Paccanaro et al 2005). Self-
loops are also removed from both datasets. 
  
Note that the two databases apply different rules for capturing 
the data and often use different systems for cross-referencing 
genes and proteins across biological databases. For example, the 
interaction curation in BioGRID mainly follow the “spoke” bait-
hit model, where directly pairs bait proteins with associated 
proteins is applied, with the inclusion of self-interactions, and 
reciprocal interactions if the bait-hit directionality is clear (Stark 
et al 2011). Furthermore, DIP includes interactions based on the 
reliability of individual experimental methods using an 
expression profile reliability index, analysis of the patterns of 

interactions between analogous proteins using the paralogous 
verification method, and domain-domain interaction preferences 
using the domain pair verification method (Salwinski et al 
2004). The reader is directed also to the respective database 
websites for updated and detailed discussion of the curation 
guidelines. 
 
The first step of the proposed method is preprocessing through 
FS-weighting, which modifies the topological properties of the 
unweighted BioGRID and DIP networks. In this study, FS-
weights are bounded by the threshold parameter 𝜏, which is set 
at 0.2. Table 1 summarizes the profile of both PPI networks 
before and after the preprocessing step. 
 
Table 1: Network profile of BioGRID and DIP datasets before and 
after FS-weighting 

 Dataset Vertices Edges Average 
Degree 

Avg Clustering 
Coeff 

BioGRID before 
weighting 

4 364 25 464 11.670 0.240 

 after 
weighting 

2 192 6 687 6.101 0.584 

DIP before 
weighting 

4 995 21 875 8.759 0.123 

 after 
weighting 

1 736 6 231 7.179 0.627 

 
Furthermore, in the MLR-MCL with balance phase of the 
proposed method, the balance parameter 𝑏  is set to 0.5, and 
inflation parameter 𝑟	is fixed to 2.0. The weight parameters for 
the core-attachment scheme are set at 𝑎 = 1.0, 𝛾 = 0.75. These 
set of parameters are chosen, based on the default parameters 
used in (Satuluri et al. 2010) for the balance and inflation 
parameters, and in (Srihari et al. 2010) from core-attachment 
weight parameters. 
 
For evaluating the clustering results of the two yeast PPI 
networks, the CYC2008 protein complex data (Pu et al. 2009) 
was used as the gold standard for cluster validation.  This dataset 
is a list of 408 experimentally validated protein complexes in S. 
cerevisiae, with 1,920 annotations involving a total of 1,627 
proteins (with some proteins having multiple annotations). 
 
B. Cluster Validation 
In order to study the relative performance of different supervised 
learning algorithms, we need to determine whether a predicted 
protein complex matches a complex in benchmark set. In 
(Satuluri et al. 2010), the authors used the precision, recall, and 
F-score as the criteria, which is defined below. 
 
Let 𝐵 = 𝐵) )���  and𝐶 = 𝐶) *��9  be the sets of benchmark and 
predicted complexes, respectively. Given a predicted complex 
𝐶*, the precision and recall value of 𝐶* is calculated based on a 
benchmark complex in 𝐵. The precision (sensitivity) 𝑃𝑟𝑒𝑐	and 
recall (coverage) 𝑅𝑒𝑐 of 𝐶* is, respectively, defined as 

𝑃𝑟𝑒𝑐(𝐶*, 𝐵)) =
𝐶*⋂𝐵)
|𝐶*|

, 

𝑅𝑒𝑐 𝐶*, 𝐵) =
𝐶*⋂𝐵)
|𝐵)|

 

 
The quality of predicted complexes is measured using the F-
score metric.  The F-score 𝐹 of a given complex 𝐶* is given by 

𝐹(𝐶*) = max
)

2 ∙ 𝑃𝑟𝑒𝑐(𝐶*, 𝐵)) ∙ 𝑅𝑒𝑐(𝐶*, 𝐵))
𝑃𝑟𝑒𝑐 𝐶*, 𝐵) + 𝑅𝑒𝑐(𝐶*, 𝐵))

 

 
Note that each predicted complex is matched with the 
benchmark complex, and then the maximal F-score among all 
benchmark complexes is identified. For a given clustering result, 
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the (weighted) average F-score 𝐹efg is the weighted average of 
all maximal F-scores associated per predicted complex, that is: 

𝐹efg(𝐶) =
|𝐶*|𝐹(𝐶*)9

*��

|𝐶*|9
*��

, 

where 𝐶*		 refers to a predicted complex 𝑗, 𝑗 = 1, … , 𝑛 , and 
𝐹(𝐶*) refers to the maximal F-score matched to the predicted 
complex 𝑗 . Similarly, the average precision 𝑃𝑟𝑒𝑐efg  and the 
average recall 𝑅𝑒𝑐efg are the weighted averages of the maximal 
precision and recall of each predicted complex, respectively. 
 
In this paper, the average F-score is computed by comparing the 
predicted complexes against the CYC2008 catalog (Pu et al. 
2009), which is “a comprehensive catalog of manually curated 
408 heteromeric protein complexes in S. cerevisiae reliably 
backed by small-scale experiments from the literature”. 
 
RESULTS AND DISCUSSION 
This section presents the relative performance of the proposed 
algorithm, in comparison to four other clustering algorithms 
over two Saccharomyces cerevisiae yeast datasets. The 
performance of the algorithm was tested across four data 
preprocessing scenarios, with respect to their average F-scores, 
as well as their respective precision and recall values. 
 
A. Comparative Evaluation 
For comparison, four other clustering algorithms were also run 
on the two datasets, namely the (plain) MLR-MCL with balance 
(Satuluri et al. 2010), MCL-CAw (Srihari et al. 2010), PCP 
(Chua et al. 2008), and COACH (Wu et al. 2009). The PCP 
algorithm applies FS-weight scoring scheme to remove 
unreliable interactions and add indirect interactions, and then 
merges cliques to produce the final list of complexes. Moreover, 
COACH also utilizes core-attachment method in complex 
detection, which starts with characterizing the core proteins 
from neighborhood graphs and forms protein complexes by 
including attachments into cores. Table 2 summarizes the 
different features of the five clustering algorithms. 
 
Table 2: Features of five clustering methods 

Method Weighting Method Clustering Method Core-Attachment 
Structure 

COACH none Neighborhood affinity yes 
PCP FS-weighting Clique-merging no 

MLR-MCL none Markov (regularized) no 
MCL-CAw FS-weighting Markov yes 
Proposed FS-weighting Markov (regularized) yes 

 
The average F-score of the four algorithms, as well as their 
average precision and average recall, obtained for the BioGRID 
and DIP datasets, are presented in Tables 3 and 4, respectively. 
 
Table 3: Performance of Different Methods for BioGRID Dataset 

Method Precavg Recavg Favg 
COACH 0.250316 0.634635 0.305980 

PCP 0.262276 0.697915 0.311961 
MLR-MCL 0.247995 0.693017 0.289343 
MCL-CAw 0.354374 0.543846 0.350216 
Proposed 0.427992 0.654529 0.439998 

 
Table 4: Performance of Different Methods for DIP Dataset 

Method Precavg Recavg Favg 
COACH 0.296630 0.581313 0.327533 

PCP 0.233694 0.594110 0.270041 
MLR-MCL 0.279371 0.548459 0.306390 
MCL-CAw 0.345003 0.477677 0.332294 
Proposed 0.525140 0.673680 0.525485 

It is evident in Tables 3 and 4 that the proposed method 
outperforms the other four algorithms, in terms of average F-
score, and over two datasets.  
 
It is worth noting that the F-score for the proposed algorithm 
increased by 52% for BioGRID dataset and 71.5% for DIP 
dataset, as compared to the plain MLR-MCL with balance 
algorithm. This may signify the importance of including 
interaction reliability in the process of clustering proteins. There 
is also a raise in F-score of around 25.6% (BioGRID) and 58.1% 
(DIP), in comparison to MCL-CAw algorithm, which may imply 
that balance and scalability in clustering affects the quality of 
the complexes detected. Furthermore, the average F-score 
increased by 43.8% (BioGRID) and 60.4% (DIP) for COACH, 
and 41% (BioGRID) and 94.6% (DIP) for PCP.  
 
The proposed method also achieved the highest average 
precision values over the five algorithms tested and over the two 
PPINs. For the DIP dataset, the proposed method showed 
considerable improvement of at least 10.2% in average recall 
over four other algorithms tested in the study. However, the 
MLR-MCL and PCP algorithms got higher average recall 
values, by around 6%, over the BioGRID dataset than the 
proposed method, which may imply that the latter method is 
more conservative in extracting out complexes from clusters. 
Further refinement of the algorithm, by varying the parameters 
needed by the algorithm, is recommended for future study.  
 
On the other hand, a significant fraction of the proteins in the 
two PPINs do not have any experimental annotations, with only 
27.2% and 28.2% of the proteins are annotated in BioGRID and 
DIP, respectively. This means that the precision (i.e., the ratio of 
predicted complexes with annotations over all output clusters) is 
expected to be low for many output clusters. 
 
B. Effects of Data Preprocessing in Clustering Results 
There are proteins annotated in the CYC2008 that are not present 
in the BioGRID and DIP datasets, i.e., three are completely 
absent in the BioGRID data and 288 proteins are completely 
absent in the DIP data. With these disparities, the average F-
scores were computed under two cases. The first case consists 
of the average F-score computed against the complete 
CYC2008, while the second case consists of the average F-score 
computed against a version of the CYC2008 tailored in such a 
way that this only includes annotations of proteins present in a 
dataset and discards any complexes having only one protein 
member as a result of eliminating the annotations of absent 
proteins. Table 5 summarizes the different scenarios considered 
in the study, under which the average F-score of the clustering 
results was computed. 
 
Table 5: Dataset Scenarios 

 Include unidentified 
clusters 

Exclude unidentified 
clusters 

Tailored Benchmark Scenario A Scenario B 
Complete Benchmark Scenario C Scenario D 
 
Figures 1a and 1b details the average F-scores resulting from 
runs of the five algorithms on the BioGRID and DIP datasets, 
respectively. 
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The improvement in average F-scores ranges from 25.6% to 
96.3% across the four data preprocessing scenarios for the 
BioGRID dataset, and from approximately 58.1% to 153.3% for 
the DIP dataset. 
 
It is consistent across four scenarios that the core attachment 
structure has a significant effect in enhancing the cluster quality, 
as it yielded an increase of 52% – 96.6% for BioGRID dataset 
and 71.5% – 153.3% for DIP dataset, with respect to MLR-MCL. 
Furthermore, results suggest that balance and scalability raises 
the average F-score, given an additional 25.6% – 47.1% 
(BioGRID) and 58.1% – 87.6% (DIP) in the average F-scores 
over MCL-CAw. 
 
There is also a positive change in the average F-scores computed 
from the results of the proposed algorithm with respect to those 
from the results of COACH and PCP. For COACH, there is a 
35.6% – 43.8% improvement in average F-score over BioGRID 
dataset and 56.8% – 60.4% improvement over DIP dataset. 
Moreover, a 41% – 55.7% increase in average F-scores over 
BioGRID dataset and a 94.6% – 126.5% increase over DIP 
dataset was observed with respect to PCP algorithm. 
 
CONCLUSION 
 
In this paper, a hybrid algorithm for protein complex discovery 
for protein interaction networks has been presented, which 
integrates an extension of the Markov clustering algorithm with 
better scalability and balance, with the application of the core-
attachment structure to reflect the inherent organization and 
modularity of protein complexes. Based on performance 
analysis, the proposed algorithm yielded an improvement of 
weighted average F-scores, between 25.6% to 153.3% over two 
datasets and across four data preprocessing scenarios. 
 
The results indicate an improvement in the average F-scores 
with both the implementation of balance and scalability and 
core-attachment structure to Markov clustering process, as 
compared to other algorithms used in the study and with various 
data preprocessing scenarios. The results show an increase in F-
score of 52% – 96.6% (BioGRID) and 71.5% –153.3% (DIP) 
over MLR-MCL across four data preprocessing scenarios, as 
well as an improvement of 25.6% – 47.1% (BioGRID) and 
58.1% – 87.6% (DIP) over MCL-CAw.  
 
For future work, it is recommended to apply the algorithm to 
networks with more complex topology (e.g., human PPIN), as 
well as compare the reliability of the results with other 
computational algorithms. It is also interesting to look onto the 
performance of the algorithm with respect to a dynamic PPI 

network, for example, the successive releases of BioGRID 
datasets. 
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