

Vol. 17 | No. 01 | 2024 SciEnggJ

189

Model separability of robustness
diagram with loop and time controls

Jasmine A. Malinao*1 and Richelle Ann B. Juayong2

1Division of Natural Sciences and Mathematics, University of the Philippines Tacloban College, Tacloban

City, Leyte, Philippines
2Department of Computer Science, College of Engineering, University of the Philippines, Diliman, Quezon

City, Metro Manila, Philippines

ABSTRACT

n this study, we introduced and formalized the concept of
separability of a multidimensional workflow model known
as Robustness Diagrams with Loop and Time Controls.
Separability reflects structures and behaviors in such
models that are usable in effective and efficient modular

design and analysis and establishing parallelizable activities of
the system they represent. Through this research, we were also
able to identify maximal substructures and activities that can
become representatives of smaller ones with similar features
within their respective activity groups. These maximal profiles,
along with the relevant requirements for sharing of components,
establish separable workflows. Furthermore, we also established
the requirements of impedance-free workflows where activities
therein do not interfere with each other from initiation to their
completion. Then, we established the relationship between the
separability and impedance-freeness of these workflows.
Additionally, we provided proof of the correctness and time and
space complexity of the algorithm and verification strategies that
are needed or relevant in establishing separable and impedance-

free workflows. Lastly, we posed recommendations for future
research on extending this study towards the domain of
parallelization of activities in these workflows.

1. Introduction

Real-world systems can be represented by models in various
formats, levels of detail, abstractions, and complexity. These
systems are analyzed for their satisfaction with some quality
criteria or well-known workflow properties with the hopes of
profiling what they can do or solve. In the field of system
modeling and model verification, there is a rich and diverse set
of frameworks and tools that aid in tasks from system planning,
design and analysis, execution, maintenance, and evolution.
Workflows such as Petri Nets, Business Process Modelling and
Notation (BPMN)(Ko et al. 2009), WOODSS (WOrkflOw-
based Spatial Decision Support System(Medeiros et al. 2005),
the Unified Modelling Language (UML), Robustness Diagrams
with Loop and Time Controls (RDLT)(Malinao 2017), among
others, are such type of tools. Workflows are founded upon
system representation built under three dimensions (van der
Aalst 1996), namely, (a) resource, (b) process, and (c) case. Each
of these dimensions would capture different sets of information

I

 ARTICLE

*Corresponding author
Email Address: jamalinao1@up.edu.ph
Date received: February 28, 2024
Date revised: May 17, 2024
Date accepted: June 01, 2024
DOI: https://doi.org/10.54645/2024172CRV-31

KEYWORDS

model verification, RDLT, separability, soundness,
workflows

https://doi.org/10.54645/2024172CRV-31

 SciEnggJ Vol. 17 | No. 01 | 2024 190

about the execution of activities that systems as described
through their models. For example, UML Class Diagrams are
uni-dimensional models that only focus on conveying the
resource dimension of a system, i.e. objects that act upon their
designated roles. Meanwhile, Petri Nets can express information
under the process dimension and case dimensions. They are used
to show tasks that are designed in a sequential, conditional,
iterative, and parallel manner. Furthermore, they provide a way
for modelers to simulate such tasks to verify if the given Net
satisfies proper termination and if there are no unusable
components, i.e. the soundness property (van der Aalst 1996).
At times, workflows such as BPMN and RDLTs can help system
analysts express system information using all three workflow
dimensions with some level of care and consciousness to not
overwhelm users, induce workflow errors, and maintain a
verifiable and scalable workflow model. With this power of
representation, RDLTs, for example, have been used to model
and analyze real-world systems, such as HVAC systems
(Malinao 2017), integrated disease surveillance and response
systems (Lopez et al. 2020), and Fujitsu Ten’s Computer Aided
Multi-Analysis System Auto Test Tool (Malinao et al. 2013).

Whenever models evolve in size and complexity to keep up with
their representation of a reference system, the inherent question
of its maintainability, composability, scalability, or verifiability
arises. For example, when a Petri Net is formed as a set of
smaller modules, wherein each of its modules is sound,
soundness at the level of the integrated Net is not guaranteed
(van der Aalst 2000). Workflow models that represent activities
that share components and/or resources can experience
deadlocks or withdrawn active processes that can induce their
non-completion of tasks. These can happen whenever
submodules inside a model, or its entirety, are not properly
designed or configured such that, regardless of the serialization
or parallelization of such activities, this erroneous behavior
would still manifest (Hauser et al. 2006, Kotb and Baumgart
2005, van Hee et al. 2003). In the context of RDLTs and their
nature on multidimensional system representation, approaches
have been introduced to either decompose an input RDLT into
simpler models having lower dimensions, e.g. Sequence
Diagrams (Eclipse and Malinao 2023a), Petri Nets (Sulla and
Malinao 2023), Class Diagrams (Calvo and Malinao 2023), for
information management with cognizance of loss of information,
or transformed into matrix representations (Delos Reyes et al,
2018), along with the required matrix operations for activity
simulation, for model verification. However, no literature to date
has provided the concepts and techniques to obtain separable
substructures that can facilitate effective and efficient module-
based analysis and model verification. Moreover, none of them
has also analyzed the impact of multiple modules and/or system
activities having shared components such that the completion or
possible parallelization of processes therein comes into question.

In this study, we address the abovementioned gaps in module-
based representation and analysis of RDLTs. More specifically,
we establish the definitions, requirements, efficient algorithms,
and design strategies, and prove theorems regarding the
separability of substructures and activity profiles in RDLTs
regardless of the sharing of components and complex attributes
innate to these models such as its reset structures and behavior.

Section 1.1 provides the basic notations, definitions, algorithms,
and strategies for system representation and verification of
RDLTs. We emphasize the concept and strategies around
activity group (Eclipse and Malinao 2023b); structure-based
computations on the reusability of components in activities in
RDLTs that can have reset profiles; contraction paths to
establish reachable components during process execution; and
model simplification of RDLTs via vertex simplification for
abstracted and level-based views of an input RDLT.

Section 2 provides our proposed methodology for establishing
separable structures and profiles in RDLTs. We first establish
the role of maximal activities of activity groups relative to other
(maximal) activities in the same or different activity groups. We
also improve the contraction path discovery in RDLTs to
effectively extract minimal substructures, appending looping
information in them as a post-processing step, to be able to
generate maximal substructures in RDLTs. These maximal
substructures are then used to generate their corresponding
activity groups. By combining our knowledge of the reusability
of components in activities, as well as our results on these
substructures, we establish separability for RDLTs and its
complexity of verification. In Section 2, we also introduce the
concept of a composite activity that is built upon smaller
activities, albeit maximal within their respective groups, and
reuse the activity extraction algorithm in literature (Malinao
2017) on a transformed version of the input RDLT to determine
impedance between/among the latter activities. With this, we
establish impedance-free RDLTs. Through these results, we
relate separable structures and maximal activity profiles of
RDLTs concerning their impedance on activity completion,
accounting for shared components between and/or among them.

Finally, Sections 3 and 4 provide and summarize our results and
contributions, as well as establish an initial approach and
recommendation to extend our work in the domain of parallel
profiles in RDLTs.

1.1. Robustness Diagram with Loop and Time Controls

We provide the definition of RDLT below. In the context of this
study, the set ℕ of natural numbers is the set of positive integers.

Definition 1. (Robustness Diagram with Loop and Time
Controls) (Malinao 2017)

A Robustness Diagram with Loop and Time Controls (RDLT)
is a graph representation 𝑅 of a system that is defined as 𝑅 =
(𝑉, 𝐸, 𝑇,𝑀) where:

• 𝑉 is a is a finite set of vertices. Each vertex can be of
two types: an object or a controller. An object can be
of two subtypes: a boundary or an entity.
An object corresponds to a resource, e.g. person, file
system, table, etc., while a controller corresponds to a
task in a system.

• 𝐸 is a finite set of arcs such that no two objects are

connected. Furthermore, every arc (𝑥, 𝑦) has the
following attributes:

– 𝐶: 𝐸 → 𝛴 ∪ {𝜀} where 𝛴 is a finite non-
empty set of symbols and 𝜀 is the empty
symbol. 𝐶(𝑥, 𝑦) ∈ 𝛴 means that 𝐶(𝑥, 𝑦) is
a symbol corresponding to a condition that
is required to be satisfied, e.g. input/output
requirement, to proceed from 𝑥 to 𝑦 .
Meanwhile, 𝐶(𝑥, 𝑦) = 𝜀 means that there is
no condition imposed by (𝑥, 𝑦) or signifies
that 𝑥 is the owner object of the controller 𝑦.

– L: E → ℕ is the maximum number of
traversals allowed on the arc.

• Let 𝑇 be a mapping such that 𝑇(𝑥, 𝑦) = (𝑡!, … , 𝑡")

for every (𝑥, 𝑦) ∈ 𝐸 where 𝑛 = 𝐿(𝑥, 𝑦) and 𝑡#	 ∈
	ℕ		is the time a check or traversal is done on (𝑥, 𝑦) by
some algorithm’s walk on 𝑅.

• 𝑀:𝑉 → {0,1} indicates whether 𝑢 ∈ 𝑉 is a center of
an RBS. An RBS is a substructure of 𝐺% of 𝑅 that is
induced by a center 𝑢 ∈ 𝑉, i.e. if 𝑀(𝑢) = 1, and the
set of controllers owned by 𝑢. (𝑥, 𝑦) is an in-bridge of

Vol. 16 | No. 01 | 2023 SciEnggJ 191

𝐺% if 𝑥 is not a vertex in 𝐺% but 𝑦 is. Conversely,
(𝑥, 𝑦) is an out-bridge of 𝐺% if 𝑥 is a vertex in 𝐺%, but
𝑦 is not. Lastly, a pair of arcs (𝑎, 𝑏) and (𝑐, 𝑑) are
type-alike with respect to 𝑦 if (𝑎, 𝑏) and (𝑐, 𝑑) are
both in/out-bridges of 𝑦, or both are not. Note that an
RBS has only one center.

Shown in Figure 1 is an RDLT 𝑅 with 𝑥!(𝑥&) as its source(sink)
and has one RBS whose center is 𝑥' . The center 𝑥' has two
owned controllers, i.e. 𝑥(and 𝑥). The entire RBS is annotated
with a circle with dashed lines for emphasis. The in-bridge of 𝑥'
is (𝑥!, 𝑥') , while 𝑥) has the out-bridge (𝑥), 𝑥&) . The arcs
(𝑥(, 𝑥)) and (𝑥', 𝑥)) are type-alike relative to 𝑥) since they are
both not in/out-bridges of 𝑥). Meanwhile, (𝑥(, 𝑥)) and (𝑥), 𝑥&)
are not type-alike with respect to 𝑥) since (𝑥(, 𝑥)) is not an
in/out-bridge of 𝑥) while (𝑥), 𝑥&) is its out-bridge. By looking
at the 𝐶 -values, it can be realized that 𝑥* is an AND-
JOIN(Malinao 2017), i.e. it requires that the conditions ‘a’ and
‘b’ are both satisfied before reaching 𝑥*. Meanwhile, 𝑥) forms
an OR-JOIN(Malinao 2017) since there are no conditions that
need to be satisfied to reach 𝑥) from either of its parents 𝑥(and
𝑥' . Had there been an in-bridge (𝑥*, 𝑥)) for 𝑥) with a 𝛴 -
condition, e.g. ‘a’, this OR-JOIN is unaffected by this condition
due to type-alikeness of these arcs; thus a traversal to 𝑥) from
either 𝑥(or 𝑥' pushes on as long as the maximum allowable
times, e.g. 𝐿(𝑥(, 𝑥)), has not been exhausted during the ongoing
process executions of an activity inside the RBS.

Figure 1: RDLT with a reset-bound subsystem with center at 𝒙𝟑 ,
where 𝑴(𝒙𝟑) = 𝟏.

For simplicity of discussions, we shall focus on RDLTs with one
source and one sink vertex. Nevertheless, readers can use the
concept of an extended RDLT (Malinao 2017) for RDLTs with
more than one of these vertices and apply the concepts and
strategies of this paper as per usual. An extended RDLT of an
input RDLT is adopted from the concept of a Workflow Net (van
der Aalst 1996) of a given Petri Net. That is, the extended RDLT
adopts all the information of the input RDLT as well as it
contains one dummy source 𝑖 (sink 𝑜) vertex that is connected
to each original source 𝑠 (sink 𝑓) vertex of the input 𝑅 ,
establishing an OR-SPLIT(AND-JOIN)(Eclipse and Malinao
2023a) structure in this connection, i.e. 𝐶(𝑖, 𝑠) = 𝜀 (distinct
𝐶(𝑓, 𝑜) ∈ 𝛴) relative to other members of the AND-JOIN), and
𝐿-value set to 1. In the context of our research, we modify this
extension by setting an OR-JOIN at the sink 𝑜, rather than the
usual AND-JOIN, and the 𝐿-value to a positive integer 𝑛. We
call this modification the weakly-extended RDLT. We shall
discuss in later sections an optimal value for 𝑛 with respect to
RDLT model separability.

The so-called activity profile (Malinao 2017) describes an
activity that a system, represented by an RDLT 𝑅 , performs
through its set of components and requirements for execution
that they have. An activity profile 𝑆 = {𝑆(1), 𝑆(2),… , 𝑆(𝑘)}, 𝑘
∈ ℕ, is a set of reachability configurations 𝑆(𝑗), such that

every 𝑆(𝑗) contains the set of components (i.e. arcs) that is
reached/used at time step 𝑗 starting from the source towards the
sink of 𝑅 . A depth-first search algorithm called the activity
extraction algorithm(Malinao 2017) is used to extract one
activity from 𝑅. This algorithm considers the arc attributes of 𝑅
to know if a component can be (re)used in an activity, e.g. if its
reuse has already reached the maximum allowable times of use
as per its 𝐿-attribute values. Although this 𝐿-value of each arc
(𝑥, 𝑦) is already known by design-time, the reusability of (𝑥, 𝑦)
can be extended by placing this arc inside an RBS. Whenever an
activity exits from the boundary of an RBS, the dynamic
information stored in its 𝑇 -attribute value that indicates the
actual number of uses of (𝑥, 𝑦) inside the recent execution of
tasks inside the RBS is reset to 0. Thus, if this RBS is reused as
part of the activity, (𝑥, 𝑦) can be used again at most 𝐿(𝑥, 𝑦)
times. As an example, if the activity traverses (𝑥), 𝑥&) in Figure
1, (𝑥(, 𝑥)) is reusable even if it was used in a prior time step and
its 𝐿-value is just 1.

From Figure 1, we can have an activity profile 𝑆 with its
reachability configurations 𝑆(1) = {(𝑥!, 𝑥+)} , 𝑆(2) =
{(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆(3) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆(4) =
{(𝑥*, 𝑥+)} , 𝑆(5) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆(6) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)}, 𝑆(7) = {(𝑥*, 𝑥&)}.

An RDLT can have multiple activities that can be extracted from
it using the activity extraction algorithm. Through these
activities, an input RDLT can be checked for certain behavior or
satisfaction of model properties, e.g. proper termination, and
utility of all its components – i.e. soundness (van der Aalst 1996).
However, this checking can take a significant amount of time
and space because there are as many activity profiles as there are
paths from the source 𝑠 to the sink 𝑓, inclusive of repeatable
paths induced from loops and the 𝐿-values of the arcs of 𝑅. With
this, previous literature would introduce verification techniques
for RDLT properties by use of the structural information in
RDLTs. At times, this structural information would also be used
to decompose RDLTs and transform the decomposed
components into uni- or bi-dimensional models such as Petri
Nets, the UML's Sequence Diagram, Class Diagrams, etc. This
decomposition can aid in a more targeted analysis of some
aspects of the input RDLT using some of its underlying
substructures. As the latter models have limited syntax to
represent all three workflow dimensions, it is expected that such
limitation would also be present in fully representing the RDLT
or its substructures.

Paper (Eclipse and Malinao 2023b) introduced the concept of
minimal activity and activity groups in RDLTs as an aid for
structural analysis and RDLT decomposition as presented in
Definition 2. Every minimal activity is then used by a mapping
in the paper to produce a set of sequence diagrams, and then
integrated with loop fragments to be able to represent the activity
group of each of these minimal activities.

Roughly speaking, a minimal activity in an RDLT is an activity
for a given source 𝑠 ∈ 𝑉 and an output sink 𝑓 ∈ 𝑉 for which
there are no other activities for 𝑠 and 𝑓 would have a smaller set
of arcs participating in an activity. Moreover, an activity group
for an activity 𝑆, denoted as 𝐴𝑐𝑡𝐺𝑟(𝑆), is a set of activities that
would have the same set of arcs as used in 𝑆 and/or with the
addition of the looping arcs whose endpoints are visited using
the arcs of 𝑆. A looping arc (𝑥, 𝑦) of a vertex 𝑦, as introduced in
(Malinao 2017), is an arc in an RDLT that, when traversed,
causes a reuse of 𝑦 and its descendants. Note that every minimal
activity for [𝑠, 𝑓] would have no arc component that is reused in
the activity, thus, no loops can be found among its components.

 SciEnggJ Vol. 17 | No. 01 | 2024 192

Definition 2. (Activity Group, Minimal Activity) (Eclipse
and Malinao 2023b)

Let 𝑆 = {𝑆(1), 𝑆(2),… , 𝑆(𝑘)}, 𝑘 ∈ ℕ, be an activity profile for
the input-output pair [𝑠, 𝑓] of 𝑉 in RDLT 𝑅. An activity group
of 𝑆 for [𝑠, 𝑓], denoted as 𝐴𝑐𝑡𝐺𝑟(𝑆), is a set of activities in 𝑅
where for every 𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), 𝑆′ = {𝑆′(1), 𝑆′(2), …, 𝑆′(𝑘′)},
𝑘′ ∈ ℕ, the following hold:

2. 𝐴 ∩ 𝐵 ≠ ∅, where 𝐴 = ⋃#.!
/ 𝑆(𝑖) and 𝐵 = ⋃0.!/1 𝑆′(𝑗) ,

and,
3. without loss of generality, ∀(𝑦, 𝑥) ∈ 𝐵 ∖ (𝐴 ∩ 𝐵),

(𝑦, 𝑥) is a looping arc of 𝑥 and ∃(𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐴 such
that 𝑥 = {𝑎, 𝑏, 𝑐} and 𝑦 = 𝑑.

𝐴𝑐𝑡𝐺𝑟234(𝑆) is a maximal activity group of 𝑆 if there is no
activity group 𝐴𝑐𝑡𝐺𝑟′(𝑆) of 𝑆 such that 𝐴𝑐𝑡𝐺𝑟234(𝑆) ⊂
𝐴𝑐𝑡𝐺𝑟′(𝑆). Meanwhile, the activity 𝑆2#" ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆) , where
𝑆2#" = {𝑆2#"(1), 𝑆2#"(2),… , 𝑆2#"(𝑘2#")} , 𝑘2#" ∈ ℕ, is
called a minimal activity of 𝐴𝑐𝑡𝐺𝑟(𝑆) if ∀𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟234(𝑆),
⋃#.!
/"#$𝑆2#"(𝑖) ⊆ ⋃0.!/1 𝑆′(𝑗).

From Figure 1, a minimal activity 𝑆2#" is composed of
𝑆2#"(1) = {(𝑥!, 𝑥+)} , 𝑆2#"(2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} ,
𝑆2#"(3) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆2#"(4) = {(𝑥*, 𝑥&)} ; one
activity group for 𝑆2#" is 𝐴𝑐𝑡𝐺𝑟(𝑆2#") = {𝑆2#", 𝑆!, 𝑆(}, where;

1. activity 𝑆! is composed of 𝑆!(1) = {(𝑥!, 𝑥+)} ,
𝑆!(2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆!(3) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆!(4) = {(𝑥*, 𝑥+)} , 𝑆!(5) =
{(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆!(6) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} ,
𝑆!(7) = {(𝑥*, 𝑥&)} . 𝑆! iterates through the AND-
SPLIT and AND-JOIN substructure only once, along
the components of 𝑆2#" and the looping arc (𝑥*, 𝑥+).

2. activity 𝑆(is composed of 𝑆((1) = {(𝑥!, 𝑥+)} ,
𝑆((2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆((3) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆((4) = {(𝑥*, 𝑥+)} , 𝑆((5) =
{(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆((6) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} ,
𝑆((7) = {(𝑥*, 𝑥+)} , 𝑆((8) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} ,
𝑆((9) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆((10) = {(𝑥*, 𝑥&)} . 𝑆(
iterates through the AND-SPLIT and AND-JOIN
substructure twice, along the components of 𝑆2#" and
the looping arc (𝑥*, 𝑥+).

Note that the activity extraction algorithm cannot iterate through
the split-join substructure the third time since it has exhausted
the maximum allowable use of (𝑥*, 𝑥+), i.e. 𝐿(𝑥*, 𝑥+) = 2, and
it is not inside an RBS so a reset thereof can extend the
reusability of its components. There is no other activity group
𝐴𝑐𝑡𝐺𝑟′(𝑆2#") of 𝑆2#" such that 𝐴𝑐𝑡𝐺𝑟(𝑆2#") ⊂ 𝐴𝑐𝑡𝐺𝑟′(𝑆2#"),
thus 𝐴𝑐𝑡𝐺𝑟(𝑆2#") is a maximal activity group of 𝑆2#".

Definition 2 opens the possibilities of a more efficient structural
and behavioral analysis of RDLTs by simply looking at a set of
the representatives of each activity group in an RDLT, rather
than looking at every activity therein to conclude some
properties in a model. However, rather than focusing on each of
their minimal activities, we focus on each of their maximal
activity – the activity in an activity group that contains the
superset of arcs among all other activities therein. In Section 2,
we shall show that this choice of representation is optimal as
every maximal activity is usable for testing RDLTs at its limits
as well as it is able to represent all the structures and behaviors
of the other activities in its groups. Furthermore, we shall also
show how they can be used as a helpful reference in determining
parallelizable activities in RDLTs via some separation technique,
with considerations of shared resources among separate
activities as well as the presence of reset-bound subsystems.

1.2. Extracting Minimal Activities in RDLTs
A minimal activity for [𝑠, 𝑓] in 𝑅 can be generated by

identifying a substructure of 𝑅 for which a contraction
path(Malinao 2017) from 𝑠 to 𝑓 can be established through this
substructure. This contraction path accounts for the
reachability/usability of an arc in 𝑅 for an activity profile by
solely looking at its condition, i.e. 𝐶-value, apart from graph
connectivity.

Roughly speaking, a contraction of an arc (𝑥, 𝑦) collapses 𝑥 and
𝑦 into one merged vertex 𝑧 . This contraction will only be
possible if there is no other arc (𝑢, 𝑦), where 𝑥 ≠ 𝑢, 𝐶(𝑢, 𝑦) ⊆
⋃
∀#
{𝐶(𝑥, 𝑦)#} ∪ {𝜀} , and (𝑥, 𝑦) and (𝑢, 𝑦) are type-alike. Note

that the contraction process can result in having multiple edges
connecting two vertices. Thus, the notation 𝐶(𝑥, 𝑦)# is the 𝐶-
value of the 𝑖67 arc connecting 𝑥 to 𝑦.

Figure 2 shows a series of contractions from the source 𝑥! to the
sink 𝑥& of 𝑅 in Figure 1.

Figure 2: A contraction path from source 𝒙𝟏 to sink 𝒙𝟗 of 𝑹 in Figure
1.

1.3. Expanded Reusability of Arcs

When determining various profiles of an input RDLT 𝑅, such as
a substructure where there is a contraction path or behaviors
such as system tasks that can be built from minimal activities, it
had been demonstrated in the literature(Malinao and Juayong
2023a, Malinao and Juayong 2023b, Malinao 2017) that the
(expanded) vertex simplification of 𝑅 is highly useful. This
technique has also been used to help prove various model
properties such as the relaxed and classical soundness of RDLTs.

The expanded vertex simplification algorithm (EVSA) (Malinao
and Juayong 2023a) creates at least two RDLTs known as the
level 1 and level 2 vertex simplified multi-graph (Cormen et al.
2009) of controllers 𝑅! and 𝑅(, respectively. 𝑅! is composed of
a set of vertices and (abstract) arcs corresponding to the vertices
and arcs of 𝑅 that are found outside of or have at least one bridge
in every RBS of 𝑅. Meanwhile, each 𝑅(is composed of a set of
vertices and arcs corresponding to the vertices and arcs of 𝑅 that
are found inside one RBS of 𝑅 . Since 𝑅! only retains those
vertices that have at least one bridge, rather than all vertices
inside an RBS, 𝑅! loses some of the details of the 𝐶- and 𝐿-
attributes of arcs found in paths internal to this RBS.
Nevertheless, by establishing an abstract arc (𝑥′, 𝑦′) in 𝑅!
between these retained vertices 𝑥′ and 𝑦′, where their respective
vertices 𝑥 and 𝑦 in 𝑅 have an internal path in the RBS of 𝑅, the
reachability of 𝑦 from 𝑥 is still accounted in 𝑅(via (𝑥′, 𝑦′) .
EVSA then computes for the derived 𝐿 -value of (𝑥′, 𝑦′) by
determining the maximum, possible number of times that it is
used by an activity in 𝑅. This computation looks at the set of
paths and cycles, if any, that can involve/reach (𝑥, 𝑦) in this
activity. Since (𝑥′, 𝑦′) represents components inside the RBS,
this computation also considers resets that can extend the
reusability of (𝑥, 𝑦) in this activity. The overall sum for the
reusability of each arc (𝑥, 𝑦) in 𝑅 is called the expanded
reusability of (𝑥, 𝑦) , denoted as 𝑒𝑅𝑈(𝑥, 𝑦) (Malinao and
Juayong 2023b).

Vol. 16 | No. 01 | 2023 SciEnggJ 193

𝑅! (and 𝑅() inherits the 𝐶- and 𝐿-values of the arcs in 𝑅 to its
own arcs, except for each abstract arc (𝑥′, 𝑦′) where 𝐶(𝑥′, 𝑦′) is
set to 𝜀, and 𝐿(𝑥′, 𝑦′) the minimum expanded reusability of all
the arcs along the path inside the RBS of 𝑅 represented by
(𝑥′, 𝑦′) plus 1. Moreover, the 𝑀-values that establish centers and
their induced RBS structures in 𝑅 are not taken into 𝑅!(𝑅()
since 𝑅!(𝑅() already represents connectivities outside(inside)
each RBS.

Figure 3 shows the level 1 and level 2 expanded vertex
simplification of 𝑅 in Figure 1. Each arc has a label with the
format 𝐶(𝑥, 𝑦) :(derived) 𝐿(𝑥, 𝑦) (𝑒𝑅𝑈(𝑥, 𝑦)) . We have two
abstract arcs in 𝑅!, i.e. (𝑥', 𝑥))! and (𝑥', 𝑥))(representing the
internal paths 𝑥! → 𝑥(→ 𝑥) and 𝑥' → 𝑥) , respectively, in the
input 𝑅. Since 𝑅 has no looping involved in its RBS, the level 2
simplification 𝑅(reflects the reusability of (𝑥', 𝑥)) as 0.
(Malinao and Juayong 2023a) considers that each abstract arc
(𝑥′, 𝑦′) should not control the reusability of other non-RBS arcs,
thus the computation of 𝑒𝑅𝑈(𝑥′, 𝑦′) adds 1 to the original
reusability of (𝑥, 𝑦) in 𝑅 before extended reusability via its in-
bridges of its RBS are considered. With this, the 𝑒𝑅𝑈(𝑥', 𝑥)) is
equal to 1 in 𝑅! , and the derived 𝐿 -value 𝐿(𝑥', 𝑥)) = 2 .
Meanwhile, the split-join substructure in 𝑅 from 𝑥+ to 𝑥* has
each of its arcs (𝑢, 𝑣) to have 𝑒𝑅𝑈(𝑢, 𝑣) = 2 since looping
within this substructure is only possible twice due to the
controlling of iteration via the 𝐿(𝑥*, 𝑥&) = 2.

Figure 3: Expanded Vertex Simplifications of 𝑹 in Figure 1. Each arc
(𝒙, 𝒚) in this figure has a label with the format 𝑪(𝒙, 𝒚):(derived) 𝑳(𝒙, 𝒚)
(𝒆𝑹𝑼(𝒙, 𝒚)).

With EVSA, we would be able to realize the reusability of
RDLT components alongside the reset profiles of RDLT models.
By combining the strategy on establishing maximal activity
structures in RDLTs, we can then progress to establishing
concepts and techniques to separate an input RDLT into
fragments without loss of local and global information of
systems as represented by their RDLT models. Such separation
can be helpful whenever we want to study in isolation some
substructures of a system, relate them against each other, and/or
build more efficient mechanisms to study, observe, and simulate
system behaviors in a parallel fashion.

2. Methodology for Establishing Separable RDLTs

In this section, we formalize the concepts and techniques
relating to separability of RDLTs with a focus on maximal
activities and structures that support their execution. We begin
by looking at how individual maximal activities in activity
groups and sharing of components between and among them
influence the separability of an RDLT model, as well as their
activity completion or impedance thereof, possibly incurred
through these shared components. Subsequently, we establish
the structural requirements and introduce algorithms that build
and/or prove profiles of separable RDLTs with the help of the
concept of maximal activity structures, composite activities, and
looped RDLTs, among others. Thereafter, we prove
relationships between separable and impedance-free RDLTs.

Definition 3. (Maximal Activity)

Let 𝑆 = {𝑆(1), 𝑆(2),… , 𝑆(𝑘)}, 𝑘 ∈ ℕ, be an activity for the

input-output pair [𝑠, 𝑓] of 𝑉 in 𝑅.

Let 𝐴𝑐𝑡𝐺𝑟234(𝑆) be a maximal activity group of 𝑆 for [𝑠, 𝑓] in
𝑅.

The activity 𝑆234 ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆) , 𝑆234 =
{𝑆234(1), 𝑆234(2),… , 𝑆234(𝑘234)} , 𝑘234 ∈ ℕ, is called a
maximal activity for [𝑠, 𝑓] in 𝑅 if ∀𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), where 𝑆′ =
{𝑆′(1), 𝑆′(2), …, 𝑆′(𝑘′)}, 𝑘′ ∈ ℕ, ⋃#.!

/"'(𝑆234(𝑖) ⊇ ⋃0.!/1 𝑆′(𝑗).

If we analyze 𝑆234 of 𝐴𝑐𝑡𝐺𝑟(𝑆), it would be an activity profile
that is composed of the arcs in the minimal activity 𝑆2#" ∈
𝐴𝑐𝑡𝐺𝑟(𝑆), along with all the looping arcs (𝑥, 𝑦) ∈ 𝐸 where 𝑥
and 𝑦 are vertices found in 𝑆2#".

From the RDLT 𝑅 in Figure 1, we have three(3) maximal
activities 𝑆234! , 𝑆234(, and 𝑆234' for its input-output pair [𝑥!, 𝑥&],
as follows:

1. 𝑆234! that is composed of 𝑆234! (1) = {(𝑥!, 𝑥+)} ,
𝑆234! (2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆234! (3) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆234! (4) = {(𝑥*, 𝑥+)} ,
𝑆234! (5) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆234! (6) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆234! (7) = {(𝑥*, 𝑥+)} ,
𝑆234! (8) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆234! (9) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)}, 𝑆234! (10) = {(𝑥*, 𝑥&)};

2. 𝑆234(that is composed of 𝑆234((1) = {(𝑥!, 𝑥')} ,

𝑆234((2) = {(𝑥', 𝑥()} , 𝑆234((3) = {(𝑥(, 𝑥))} ,
𝑆234((4) = {(𝑥), 𝑥&)};

3. 𝑆234' that is composed of 𝑆234' (1) =

{(𝑥!, 𝑥')} , 𝑆234' (2) = {(𝑥', 𝑥))} , 𝑆234' (3) =
{(𝑥), 𝑥&)};

Remark 1: In view of a weakly-extended RDLT, since our
maximal activities share the arcs leading from(to) the
dummy source(sink), it is easy to see that a good L-value of
these arcs is at least the number of maximal activities in this
RDLT.

2.1. Composite Activities and Activity Impedance

As a preliminary step to establishing profiles and techniques that
help separate substructures of an input RDLT 𝑅 based on its
(maximal activities, we first introduce the concept of composite
activities and impeding activities in 𝑅 as shown below. Then, we
look at the implications of shared components among these
activities.

Definition 4. (Looped RDLT)

Given an RDLT 𝑅 = (𝑉, 𝐸, 𝑇,𝑀) with one source 𝑠 and sink
vertex 𝑓.

A looped RDLT 𝑅899: = f𝑉899:, 𝐸899:, 𝑇899:, 𝑀899:g of 𝑅 is an
RDLT derived from 𝑅 where:

1. 𝑉899: and 𝐸899: are sets of vertices and arcs
corresponding to 𝑉′ and 𝐸′, respectively, that inherit
the same values of the vertex and arc attributes of 𝑅.
Additionally, 𝑉″ contains a dummy source controller
𝑖 and dummy sink controller 𝑜 such that
(𝑖, 𝑠′), (𝑓′, 𝑜) ∈ 𝐸899: where 𝑠′(𝑓′) correspond to
𝑠(𝑓) of 𝑅, with 𝐶(𝑖, 𝑠′) = 𝐶(𝑓′, 𝑜) = 𝜀, L(i, s'), L(f',
o) ∈ ℕ,

 and

2. (𝑓′, 𝑠′) ∈ 𝐸899: , with 𝐶(𝑓′, 𝑠′) = 𝜀 , and L(f',s') ∈ ℕ.

 SciEnggJ Vol. 17 | No. 01 | 2024 194

Figure 4: The looped RDLT 𝑹𝒍𝒐𝒐𝒑 of the input 𝑹 in Figure 1.

Definition 5. (Composite Activity 𝑺′)

Let 𝑹 be an RDLT with its looped RDLT 𝑹𝒍𝒐𝒐𝒑 with 𝒊 and 𝒐 as
its dummy source and sink controllers (see Definition 4).

An activity 𝑺1 of 𝑹𝒍𝒐𝒐𝒑 is called a composite activity in 𝑹𝒍𝒐𝒐𝒑
for a set of activities 𝑨 = {𝑺𝟏, 𝑺𝟐, … , 𝑺𝒏} in 𝑹 , n ∈ ℕ, 𝑺𝒒 =
{𝑺𝒒(𝟏), 𝑺𝒒(𝟐),…, 𝑺𝒒f𝒌𝒒g} , 𝒌𝒒 ∈ ℕ, such that 𝑺1 is the
concatenation of the activities in 𝑨 , denoted as 𝑺1 = 𝑺𝟏⊕
𝑺𝟐⊕…⊕𝑺𝒏 , where 𝑺1 = {𝑺1(𝟏), 𝑺1(𝟐),… , 𝑺1(𝒌′)} , k' 	∈ ℕ,
with

1. 𝑆1(1) = {(𝑖, 𝑠1)},

2. Let β	 = 	∑ f𝑘B + 1g"
B.! 		 and Ω = {	∑ f𝑘B +2

B.!
1g	|	1 ≤ 𝑚 ≤ 	𝑛	}.
For each 𝑡CB,:E ∈ {1,2,… , β}\Ω where 1 ≤ 𝑞 ≤ 	𝑛
and 1 ≤ 𝑝 ≤	𝑘B, set
𝑆′f1 + 𝑡CB,:Eg = {(𝑥1, 𝑦1) ∈ 𝐸899:|(𝑥1, 𝑦1)

∈ 𝐸899: corresponds to (𝑥, 𝑦) ∈ 𝐸,
 and (𝑥, 𝑦) ∈ 𝑆B(𝑝)},

3. For each 𝑡CB,:E ∈ 	Ω where 1 ≤ 𝑞 ≤ 	𝑛 and 1 ≤ 𝑝 ≤

	𝑘B, set

𝑆1F!GH6,-,/0GBIJ = {(𝑓1, 𝑠1)}

4. 𝑆1(𝑘1) = {(𝑓1, 𝑜)}, where 𝑘1 = 2 +∑ f𝑘B + 1g"
B.!

In essence, the activity 𝑆1 resulting from the concatenation of
activities in 𝐴 simulates the execution of 𝑆! first in 𝑅899: ,
initiating it via 𝑖 at first, and then from 𝑠1 to 𝑓1 (via the
components of 𝑆!). Thereafter, this activity goes back to 𝑠1 from
𝑓1, and then simulates 𝑆(from there in 𝑅899:, and so on. After
iterating through these simulations until the last activity 𝑆", the
activity 𝑆1 completes in 𝑅899: by traversing (𝑓1, 𝑜) at time step
𝑘1.

Remark 2. The composite activity 𝑆1 for 𝐴 will facilitate the
checking of the possibility that every activity 𝑆B ∈ 𝐴 completes
in full, with respect to the arcs involved in 𝑆B . With this,
𝐿(𝑓1, 𝑠1) should be at least |𝐴|, i.e. the number of activities in 𝐴
which are tested for their completion relative to each other.

In addition, whenever 𝑅 is a multi-source(multi-sink) RDLT,
simply connect 𝑖 ∈ 𝑉899:f𝑓1 ∈ 𝑉899:g to every 𝑠1 ∈ 𝑉899:f𝑜 ∈
𝑉899:g where 𝑠1(𝑓1) corresponds to a source 𝑠 ∈ 𝑉 (sink 𝑓 ∈
𝑉) of 𝑅, where 𝐶(𝑖, 𝑠1) = 𝜀 and 𝐿(𝑖, 𝑠1) = 1 (𝐶(𝑓1, 𝑜) = 𝜀 and
𝐿(𝑓1, 𝑜) = 1). Similarly, set every 𝐿(𝑓1, 𝑠1) as described above.
Definition 6. (Non-impeding Activities)

Let 𝑅 be an RDLT with its source and sink vertices 𝑠 and 𝑓,
respectively, and 𝑅899: be its looped RDLT with 𝑖 and 𝑜 be its
dummy source and sink vertices.

Let 𝐴 be a set of activities in 𝑅 for the pair [𝑠, 𝑓].

We say that 𝐴 has no activities that impede each other in 𝑅 if
there exists a composite activity 𝐶 in 𝑅899: for the activities in
𝐴.

Building a composite activity 𝑆′ from a set of activities of 𝑅 in
Figure 1, say its maximal activities 𝑆234! , 𝑆234(, and 𝑆234' , we
have 𝑆′ = {𝑆′(1), … , 𝑆′(21)} where 𝑆′(1) = {(𝑖, 𝑥!)} , 𝑆′(2) =
{(𝑥!, 𝑥+)} , 𝑆′(3) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆′(4) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆′(5) = {(𝑥*, 𝑥+)} , 𝑆′(6) = {(𝑥+, 𝑥,),
(𝑥+, 𝑥-)} , 𝑆′(7) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆′(8) = {(𝑥*, 𝑥+)} ,
𝑆′(9) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆′(10) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} ,
𝑆′(11) = {(𝑥*, 𝑥&)} , 𝑆′(12) = {(𝑥&, 𝑥!)} , 𝑆′(13) = {(𝑥!, 𝑥')} ,
𝑆′(14) = {(𝑥', 𝑥()}, 𝑆′(15) = {(𝑥(, 𝑥))}, 𝑆′(16) = {(𝑥), 𝑥&)},
𝑆′(17) = {(𝑥&, 𝑥!)} , 𝑆′(18) = {(𝑥!, 𝑥')} , 𝑆′(19) = {(𝑥', 𝑥))} ,
𝑆′(20) = {(𝑥), 𝑥&)} , 𝑆′(21) = {(𝑥&, 𝑜)} . Note that 𝑆′ can be
completely simulated in 𝑅899: from 𝑖 until it reaches its
intended sink 𝑜. Thus, we say that 𝑆234! , 𝑆234(, and 𝑆234' do not
impede each other in 𝑅.

Theorem 1. Given an activity 𝑆 and its maximal activity group
𝐴𝑐𝑡𝐺𝑟(𝑆), let 𝑆234 be the maximal activity of this group. For
every activity 𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), where 𝑆′ has components that are
involved in a cycle, 𝑆′ and 𝑆234 impede each other.

Proof. Suppose that 𝑆′ and 𝑆234 do not impede each other in 𝑅,
where 𝑆′ has components that are involved in a cycle. That is,
there exists a composite activity 𝑆K92 = 𝑆234⊕𝑆′ that is
derivable from the looped RDLT 𝑅899: of 𝑅. Note that the set of
components of 𝑆234 is a superset of the components of 𝑆′. Thus,
we can select some (𝑥, 𝑦) of 𝑆234 and analyze its use inside
𝑆K92.

Suppose (𝑥, 𝑦) is involved in some cycle in 𝑆234. Using 𝑅899:,
we shall simulate 𝑆K92 using 𝑆234 first. We simulate 𝑆234 and
pass through (𝑥, 𝑦) by the number of times it is reused in 𝑆234.
Since 𝑆234 is a maximal activity of 𝑅, this number is the actual
reusability 𝑒𝑅𝑈(𝑥, 𝑦) of (𝑥, 𝑦) . Upon the completion of the
simulation of 𝑆234 in 𝑅899: , the activity proceeds with
traversing (𝑓′, 𝑠′) of 𝑅899:. From there, we simulate 𝑆′ and pass
through (𝑥, 𝑦) again using the number of times 𝑛 that 𝑆′ reuses
(𝑥, 𝑦). However, since we have already exhausted the allowable
number of times that (𝑥, 𝑦) is used through the simulation of
𝑆234 on 𝑅899:LM, we can never pass through (𝑥, 𝑦) again when
we try to simulate 𝑆′, regardless if (𝑥, 𝑦) is inside or outside of
an RBS. Thus, the composite activity 𝑆K92 is not realizable in
𝑅899:, ergo 𝑆234 and 𝑆 impede each other. With this, we arrive
at a contradiction.

�

With Theorem 1, since the set of components of 𝑆234 is a
superset of the components of 𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), we can use 𝑆234
to analyze activity flows in any such 𝑆′ within the group, or in
general, analyze the structure and behavior of 𝑅 through the
relationships of its set of maximal activities. Furthermore, we set
our goal in this paper to analyze these relationships across
different maximal groups for the purpose of giving system
designers and analysts the concepts and techniques that would
help them fragment an input RDLT into separable (and
manageable) substructures without compromising and omitting
its innate system information. With this, we establish
impedance-free RDLTs in the context of their maximal activities
as shown in Definition 7.

Vol. 16 | No. 01 | 2023 SciEnggJ 195

Definition 7. (Impedance-free RDLT)

An input RDLT 𝑅 is called impedance-free if every pair of its
maximal activities for its source and sink do not impede each
other.

The RDLT 𝑅 in Figure 1 is impedance-free since every pair of
its maximal activities 𝑆234! , 𝑆234(, and 𝑆234' do not impede each
other.

2.2. Techniques on RDLT Separation

2.2.1. Extracting Maximal Activities
To extract maximal activities from a given RDLT 𝑅 (with 1
input and output vertices), we shall first generate its Level 1 and
Level 2 expanded vertex simplification 𝑅! and 𝑅(, respectively.
If 𝑅(has multiple source/sink vertices, update 𝑅(as its weakly-
extended RDLT so that it only has one dummy source and sink
vertex with an OR-JOIN at the dummy sink.

Then, we establish a contraction path 𝑃 from a source vertex 𝑠N#
of 𝑅# to its sink vertex 𝑓N#. The set of vertices and edges that are
involved in 𝑃 may not compose a minimal activity in 𝑅#. That is,
this set can include looping arcs or can include a sub-path 𝑃′
from 𝑠N# to 𝑓N# where at least one of its vertex 𝑣 that is involved
in a MIX-JOIN(Malinao 2017) or an OR-JOIN has (𝑢, 𝑦) and
(𝑣, 𝑦) have duplicate 𝐶-values, i.e. 𝐶(𝑢, 𝑦) = 𝐶(𝑣, 𝑦). Note that
for the latter case, 𝑦 can be used(reached) by any activity by
satisfying 𝐶(𝑢, 𝑦) without the need to satisfy 𝐶(𝑣, 𝑦) (or vice
versa). Hence, we shall prune out such duplications without
compromising the required paths along the contraction path 𝑃
from the source to the sink of 𝑅#.

To execute the above-mentioned pruning, we shall assign a
positive integer weight to each arc that is necessary to reach the
sink from the source of 𝑅# along 𝑃. Initially, this weight per arc
is set to 0. After initialization, we collect every merge point 𝑦
along 𝑃. For every arc (𝑥, 𝑦) whose 𝐶-value is different from
the other arcs (𝑢, 𝑦), we add 1 to each arc involved along the
path 𝑄 from the source or another merge point along 𝑄 ,
whichever is nearer to 𝑦, to (𝑥, 𝑦). We do this too for one path
𝑄′ whose component (𝑥, 𝑦) has a duplicated 𝐶-value relative to
another arc (𝑣, 𝑦) along 𝑃 . After this process, arcs that are
duplicates of others with respect to their 𝐶-values, along with
their ancestors which are unnecessary to reach the sink from the
source of 𝑅#, i.e. with final weights of 0 as well, are removed
from 𝑃. (Looping arcs are also removed from 𝑃 in this process
of pruning.) The other arcs with a weight of at least 1 are deemed
to be necessary and the minimum set to reach the sink from the
source.

For brevity, we call the substructure 𝑅2#" of 𝑅# as a Minimal
Contraction Structure (MinCS) where 𝑅2#" is induced by the
arcs composing the (pruned) contraction path 𝑃 in 𝑅#.

With respect to getting a minimal activity of the entire input
RDLT 𝑅, we consolidate the components of 𝑅 that compose a
pruned contraction path P from 𝑠 to 𝑓 of 𝑅!, and a set of pruned
contraction paths in 𝑅(from a set of sources 𝐼N1 and set of sink
vertices 𝑂N1 in 𝑅(such that every 𝑜N1 ∈ 𝑂N1 appears as part of
the contraction path P of 𝑅!, and at least one 𝑖N1 ∈ 𝐼N1 has a path
towards 𝑜 ∈ 𝑂N1.
Algorithm 1 below shows the Modified Contraction Algorithm
(MCA) that extracts a minimal contraction path 𝑃 in 𝑅#.

Algorithm 1: The Modified Contraction Algorithm (MCA)

Input: RDLT 𝑅 with one source 𝑠 and sink 𝑓

Output: A minimal contraction path 𝑃 for the source and sink
of 𝑅#, 𝑖 ∈ {1,2}.

Steps:

1 Get Level-𝑖 vertex simplification of 𝑅 by
EVSA(Malinao and Juayong 2023a).

2 Select 𝑖, 𝑖 ∈ {1,2} to build 𝑃
3 If 𝑖 = 2 AND 𝑅(has more than 1 source/sink then
4 Update 𝑅(as a weakly-

extended RDLT. //sets 𝑅(to
have 1 dummy source/sink
with an OR-JOIN at the sink

5 Let 𝑠′ ∈ 𝑉# and 𝑓′ ∈ 𝑉# be the source and sink of 𝑅#
6 Let 𝑥 = 𝑠′. //𝑥 shall act as the dummy node

representing merged vertices in 𝑃
7 Initialize 𝑃 = {𝑥}.
8 From 𝑥 to 𝑓′
9 Select 𝑦 ∈ 𝑉# where (𝑥, 𝑦) ∈ 𝐸#
10 Select 𝑦 ∈ 𝑉# where (𝑥, 𝑦) ∈ 𝐸#
11 If ⋃

∀0
{𝐶(𝑥, 𝑦)0} ∪ {𝜀} ⊇ ⋃

∀(%,P)∈S#,%T4
{𝐶(𝑢, 𝑦)}

12 Update 𝐶(𝑢, 𝑦) =
𝜀, ∀(𝑢, 𝑦) ∈ 𝐸# , 𝑢 ≠ 𝑥.

13 Merge 𝑥 to 𝑦.
14 Update 𝑃 = 𝑃 ∪ {𝑦}.
15 Induce 𝑅2#" from 𝑅# using the vertices in 𝑃.
16 //Prune duplicate paths within the contraction path 𝑃
17 For each arc (𝑝, 𝑞) in 𝑅2#"
18 Initialize 𝑤𝑒𝑖𝑔ℎ𝑡(𝑝, 𝑞) = 0.
19 Let 𝑀𝑃 be the set of vertices in 𝑅2#" where each

vertex is a merge point of a JOIN
21 For each 𝑦 ∈ 𝑀𝑃
22 //Add 1 to the weight of arcs in every(one) path

that has a
23 //distinct(duplicated) 𝐶-value at merge point
24 Let 𝑄 = 𝑣!𝑣(…𝑣" be an elementary path from

the source 𝑠″ of 𝑅2#"
25 to 𝑦 where ∄(𝑢, 𝑦) in 𝑅2#" such that

𝐶(𝑣"U!, 𝑣") ≠ 𝐶(𝑢, 𝑦).
26 From 𝑗 = 𝑛 to 2
27 Update

𝑤𝑒𝑖𝑔ℎ𝑡f𝑣0U!, 𝑣0g =
𝑤𝑒𝑖𝑔ℎ𝑡f𝑣0U!, 𝑣0g + 1.

28 If 𝑣0U! ∈ 𝑀𝑃 then break.
29 Let 𝑄′ = 𝑢!𝑢(…𝑢2 be an elementary path from

the source 𝑠″ of 𝑅2#"
30 to 𝑦 where ∃(𝑣, 𝑦) in 𝑅2#" such that

𝐶(𝑢2U!, 𝑢2) = 𝐶(𝑣, 𝑦), 𝑢2U! ≠ 𝑣.
31 From 𝑗 = 𝑚 to 2
32 Update

𝑤𝑒𝑖𝑔ℎ𝑡f𝑢0U!, 𝑢0g =
𝑤𝑒𝑖𝑔ℎ𝑡f𝑢0U!, 𝑢0g + 1.

33 If 𝑢0U! ∈ 𝑀𝑃 then break.
34 Remove from 𝑅2#" any arc (𝑢, 𝑣) with

𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣) = 0.
35 Update 𝑃 to be the set of the remaining vertices of

𝑅2#"
36 Output 𝑃.

Lemma 1. MCA produces a minimal contraction path 𝑃 whose
MinCS 𝑅2#" composes a minimal activity 𝑆2#" in the expanded
level-𝑖 vertex simplification 𝑅#, 𝑖 ∈ {1,2},	of 𝑅.
Proof. We prove Lemma 1 by contradiction. That is, let 𝑆 be an
activity in 𝑅# where the components of 𝑆 =
{𝑆(1), 𝑆(2),… , 𝑆(𝑘)} are derived from using MinCS 𝑅#′
obtained through such contraction path 𝑃 of 𝑅# . Furthermore,

suppose ⋃
/

0.!
𝑆(𝑗) ⊂ ⋃

/1

01.!
𝑆2#"(𝑗′). With this, there exists an arc

 SciEnggJ Vol. 17 | No. 01 | 2024 196

(𝑥, 𝑦) that was traversed in 𝑆2#" but not in 𝑆.

1. Case 1: If 𝐶(𝑥, 𝑦) ∈ 𝛴. This case implies that there is
either an MIX- or AND-JOIN that merges at 𝑦. Note
that for a MIX-JOIN, any (𝑢, 𝑦) such that 𝐶(𝑢, 𝑦) =
𝐶(𝑣, 𝑦) is pruned out from 𝑅2#" at steps 16-35,
𝐶(𝑥, 𝑦) already represents every such (𝑢, 𝑦) in the
evaluation of the reachability of 𝑦 in 𝑅#. Moreover, if
𝑃 contains the other component of this MIX-JOIN, i.e.
(𝑣, 𝑦) where 𝐶(𝑣, 𝑦) = 𝜀 , (𝑣, 𝑦) can never be
contracted towards 𝑦 without the required condition
𝐶(𝑥, 𝑦). Thus, 𝑃 without (𝑥, 𝑦) is not a contraction
path for 𝑅# , thus 𝑆 cannot exist on 𝑅2#" , where

⋃
/

0.!
𝑆(𝑗) ⊂ ⋃

/1

01.!
𝑆2#"(𝑗′).

 Meanwhile, if 𝑦 is a merge point for an AND-JOIN

involving (𝑥, 𝑦) and some (𝑢, 𝑦) in 𝑅#, i.e. 𝐶(𝑢, 𝑦) ∈
𝛴 and 𝐶(𝑥, 𝑦) ≠ 𝐶(𝑢, 𝑦), 𝑦 can never be contracted
within 𝑃 if (𝑥, 𝑦) is missing. Similarly, 𝑃 without
(𝑥, 𝑦) is not a contraction path for 𝑅# , ergo, such 𝑆
cannot exist on 𝑅2#".

 Thus, in both scenarios, we arrive at a contradiction.

2. Case 2: If 𝐶(𝑥, 𝑦) = 𝜀. This case implies that there is

an OR-JOIN, or simply a sequential process, that
merges at 𝑦. By the pruning step of MCA, all other
(𝑢, 𝑦) with the same 𝐶-value, i.e. 𝜀, is removed from
𝑅2#". This step would then imply that there is exactly
one path from 𝑥 to 𝑦, as well as from the source of 𝑅#
to 𝑦, and then to its sink in 𝑅2#". In essence, the arc
(𝑥, 𝑦) acts as a bridge in 𝑅2#" such that 𝑅2#"
becomes a disconnected graph with the absence of
(𝑥, 𝑦) . Thus, 𝑃 is not a contraction path from its
source towards its sink without (𝑥, 𝑦). With this, thus
we proved that 𝑆 cannot exist on 𝑅2#" , where

⋃
/

0.!
𝑆(𝑗) ⊂ ⋃

/1

01.!
𝑆2#"(𝑗′) – a contradiction.

�

Lemma 2. MCA builds a minimal contraction path 𝑃, and its
corresponding MinCS 𝑅2#" in the expanded level- 𝑖 vertex
simplification 𝑅#, 𝑖 ∈ {1,2},	of the RDLT 𝑅, using 𝑂(|𝑉|') and
𝑂(|𝑉|() time and space complexity.

Proof. For Line 1, EVSA builds 𝑅# from 𝑅 with 𝑂(|𝑉|() in time
and space complexity as per (Malinao and Juayong 2023a).
Extending 𝑅# at Line 4 takes constant time and space. To build
a contraction path 𝑃 from the source 𝑠 to 𝑓 of 𝑅# from Lines 8-
14, it can take the diameter d ∈ ℕ of 𝑅# to build 𝑃, and then
multiplied with 𝑂(|𝑉|() , or 𝑂(𝑑|𝑉|() in time and space
complexity. This diameter is computed solely using the
elementary paths of 𝑅# , thus 𝑑 ∈ 𝑂(|𝑉|) . This complexity
accounts for the worst-case wherein each contraction may
require the inclusion of all paths from a split point towards its
corresponding merge point 𝑦, i.e. merging via an AND- or MIX-
JOIN. For the latter type of JOIN, contraction may first go
through all the paths ending with 𝜀 at the merge point before
going through a 𝛴-condition arc (𝑣, 𝑦) to resolve this JOIN. For
the pruning step of MCA, i.e. from Lines 16 and onwards, we
have the following steps and their corresponding time and space
complexity:

1. listing the merge points in 𝑅2#" in 𝑀𝑃 – this takes
𝑂(|𝑉|().

2. Pruning 𝑅2#" for each elementary path 𝑄(𝑄′), adding 1

to each necessary arc of 𝑅2#" – This step takes
𝑂(𝑑|𝑉|() or 𝑂(|𝑉|'). This accounts that every merge
point can have 𝑂(|𝑉|) connections. Since we do this for
each merge point along the diameter 𝑑 of 𝑅# , we
therefore obtain 𝑂(|𝑉|') and 𝑂(|𝑉|() in time and space
complexity, respectively.

�

Definition 8. (Maximal Activity Structure)
A Maximal Activity Structure(MAS) 𝑅VWX =
(𝑉VWX, 𝐸VWX, 𝑇VWX) of 𝑅# = (𝑉# , 𝐸# , 𝑇# , 𝑀#) for its source 𝑠N# and
sink vertex 𝑜N# is a projection of 𝑅# induced by the components
of its MinCS 𝑅2#" for and every looping arc (𝑥, 𝑦) of 𝑅# where
𝑥 and 𝑦 are vertices found in 𝑅2#" , where for every edge
(𝑢′, 𝑣′) ∈ 𝐸VWX corresponding to (𝑢, 𝑣) ∈ 𝐸# of 𝑅#,

𝐿(𝑢′, 𝑣′) = �
1, if (𝑢′, 𝑣′) appears in 𝑅2#" and

(𝑢, 𝑣) is not a part of a cycle in 𝑅# ,
𝐿(𝑢, 𝑣), otherwise.

Figure 5 shows the set of maximal activity structures in items (a)
and (b) of 𝑅! and 𝑅(, respectively, of the RDLT 𝑅 in Figure 1.
For item (a), note that there are two abstract arcs connecting 𝑥'
and 𝑥) in 𝑅!. Thus, due to the pruning step of MCA to extract
the MinCS of 𝑅!, it was able to find two MinCS substructures
along these abstract arcs due to their duplicate 𝐶-values, i.e.
𝐶(𝑥', 𝑥))! = 𝐶(𝑥', 𝑥))(= 𝜀. Thus, these substructures in item
(a) eventually result to 𝑅VWX! and 𝑅VWX(as two of the three MAS
of 𝑅! . Furthermore, none of the components of these
substructures are involved in a cycle, thus, their 𝐿-values are set
to 1 by Definition 8. Meanwhile, 𝑅VWX' has each of the
components of the split-join substructure having its 𝐿-value set
to its expanded reusability, i.e. 2, as per Definition 8 as well.

Figure 5: The Maximal Activity Structures (MASs) of 𝑹𝟏 and 𝑹𝟐 of 𝑹
in Figure 1.

Theorem 2. For every MAS 𝑅VWX of 𝑅# , there exists a
corresponding maximal activity 𝑆234 =
{𝑆234(1), 𝑆234(2),… , 𝑆234(𝑘)} of 𝑅# whose components use
𝑅VWX.

Proof. For this, we prove that there exists an activity 𝑆 =
{𝑆(1), 𝑆(2),… , 𝑆(𝑘)} derivable from 𝑅VWX where ∀𝑗 , 𝑆(𝑗) =
𝑆234(𝑗) (or 𝑆 = 𝑆234).

Let 𝑅2#" be the MinCS that is used to derive 𝑅VWX as per
Definition 8. Furthermore, let 𝑆2#" =
{𝑆2#"(1), 𝑆2#"(2),… , 𝑆2#"(𝑘′)} be a minimal activity in 𝑅#(as
proved in Lemma 1) that is derivable from 𝑅2#".

We construct 𝑆 via the components in 𝑆2#" such that we adopt
the precedence of every pair 𝑆2#"(𝑡) and 𝑆2#"(𝑡 + 𝑗), 1 ≤ 𝑡 ≤
𝑘′, onto 𝑆, along with the incorporation of all loops involved

Vol. 16 | No. 01 | 2023 SciEnggJ 197

between two pairs of vertices that are found in 𝑅2#"(and 𝑆2#").
That is, we simulate the activity extraction algorithm on 𝑅VWX,
building 𝑆 , by tracing the components of 𝑆2#" , momentarily
suspending this tracing if the algorithm sees a looping arc (𝑥, 𝑦)
along the previously traced components. The algorithm shall
iterate on these components as long as 𝐿(𝑥, 𝑦) of 𝑅VWX allows it
to. Once this looping is exhausted, then, the algorithm continues
to build using the subsequent components of 𝑆2#" until the next
looping arc is encountered. These processes would iterate as
stated until the last components of 𝑆2#" are simulated in 𝑅VWX
and adopted in 𝑆.

Since the 𝐿-value of each arc (𝑥, 𝑦), where (𝑥, 𝑦) is involved in
a loop in 𝑅VWX, is equal to the 𝐿-value of its corresponding arc
(𝑥′, 𝑦′) in 𝑅# (by Definition 8), then the maximum number of
times that the algorithm iterates on 𝑅VWX to build 𝑆 is the same
as the maximum number of times that (𝑥′, 𝑦′) is used in 𝑆234.
Furthermore, since 𝑆234 uses the arcs involved in 𝑅VWX , the
utility and progression of use of each arc in 𝑆234 is consistent
with that of 𝑆. Thus, we proved that 𝑆 = 𝑆234.

�

2.2.2. Separable RDLT

From here on, we would start dealing with how to separate
components or substructures of the RDLT based on their
aggregation to form an activity in 𝑅. We shall separate an input
RDLT based on its maximal activity structures where every such
structure is usable to generate an activity group of a minimal
activity in 𝑅. Identifying and separating such structures in an
input RDLT can give us an insight into how shared components
affect the parallelizability of activities if and when such
activities need to be executed at the same time.

Definition 9. (Separable RDLT)

Given 𝑅# = (𝑉# , 𝐸# , 𝑇#) and a k ∈ ℕ, 𝑅# is 𝑘-separable if there
exists exactly 𝑘 number of MAS 𝑅VWX

0 = f𝑉VWX
0 , 𝐸VWX

0 , 𝑇VWX
0 g,

𝑗 = 1,2,… , 𝑘, where for every (𝑢, 𝑣) ∈ 𝐸#, and its corresponding
arc f𝑢0 , 𝑣0g ∈ 𝐸VWX

0 ,

𝐿(𝑢, 𝑣) ≥�𝐿
/

0.!

f𝑢0 , 𝑣0g ≥ 𝑒𝑅𝑈(𝑢, 𝑣).

We call the entire RDLT 𝑅 as a separable RDLT if its
expanded vertex simplifications 𝑅# is 𝑘#-separable, 𝑘# ∈ ℕ, 𝑖	 ∈
{1,2} , and every (𝑥, 𝑦) ∈ 𝐸# has a corresponding f𝑥0 , 𝑦0g ∈
𝐸VWX
0 of some 𝑅VWX

0 .

Definition 9 means that the consolidated set of MAS of each 𝑅#
would have each component (𝑢, 𝑣) ∈ 𝐸# to have its (derived) 𝐿-
value, in particular its expanded reusability 𝑒𝑅𝑈(𝑢, 𝑣) ,
configured in a way that parts of it are distributed to each 𝐿-
value of its corresponding component f𝑢0 , 𝑣0g ∈ 𝐸VWX where
the sum of the latter does not exceed 𝐿(𝑢, 𝑣) of 𝑅#, regardless of
the fact that (𝑢, 𝑣) is a shared component by these activities.

Finally, Definition 9 also provides that every arc in a 𝑅# is
involved in at least one of its set of MAS so the entire RDLT 𝑅
is separable.

Referencing the expanded vertex simplification 𝑅! in Figure 3
and its respective MAS in Figure 5, item (a), 𝑅VWX! to 𝑅VWX' , 𝑅!
is separable by Definition 9. For example, (𝑥!, 𝑥') of 𝑅! has
𝐿(𝑥!, 𝑥') = 5 , where its set of corresponding arcs in 𝑅VWX! ,
𝑅VWX(, and 𝑅VWX' (also labelled with (𝑥!, 𝑥')) have their 𝐿 -

values totalling to 2(< 5), i.e. 𝐿(𝑥!, 𝑥') of 𝑅VWX! + 𝐿(𝑥!, 𝑥') of
𝑅VWX(= 1 + 1 = 2. Note that (𝑥!, 𝑥') is not part of MAS 𝑅VWX' .
Meanwhile, for the abstract arc (𝑥', 𝑥)) of 𝑅! in Figure 3 that
corresponds to the path (𝑥', 𝑥(), (𝑥(, 𝑥)), its 𝐿-value in 𝑅! is 1;
while its corresponding arcs (𝑥', 𝑥))! in 𝑅VWX! , 𝑅VWX(, and 𝑅VWX'
have their sum of 𝐿 -values equal to 1 (< 2). In both arcs,
𝑒𝑅𝑈(𝑥!, 𝑥') = 1 and 𝑒𝑅𝑈(𝑥', 𝑥))! are equal to 1, thus, (5 ≥
2 ≥ 1) and (2 ≥ 1 ≥ 1) (as per Definition 9, respectively. If
we look at the relationship of 𝑅# and its MAS, substructures that
involve at least one loop in 𝑅# must not be part of more than 1
MAS for 𝑅# , otherwise, 𝑅# is not separable. That is, by
Definition 8, an arc (𝑥, 𝑦) of 𝑅# would have its corresponding
arcs in each of its MASs set to its 𝐿(𝑥, 𝑦), hence, for 𝑛 MAS of
𝑅# , where 𝑛 > 1, we have 𝐿(𝑥, 𝑦) ≱ 𝑛 ∗ 𝐿(𝑥, 𝑦) ≱ 𝑒𝑅𝑈(𝑥, 𝑦)
in Definition 9.

Additionally, 𝑅(is also separable based on the 𝐿-values of its
components with relation to 𝑅VWX! and 𝑅VWX(in item (b) of
Figure 5.

Theorem 3 poses the relationship of separable and impedance-
free RDLTs.

Theorem 3. 𝑅# is separable if and only if 𝑅 is impedance-free,
i.e. for every pair of its MAS 𝑅VWX! =
(𝑉VWX! , 𝐸VWX! , 𝑇VWX! , 𝑀VWX

!) and 𝑅VWX(= (𝑉VWX(,
𝐸VWX(, 𝑇VWX(, 𝑀VWX

() that induce their corresponding maximal
activities 𝑆234! and 𝑆234(, respectively, 𝑆234! and 𝑆234(do not
impede each other.

Proof. We first prove that if 𝑅# is separable, then every such
𝑆234! and 𝑆234(do not impede each other.

Using Definition 9, we know that every such pair of MAS 𝑅VWX!
and 𝑅VWX(of 𝑅# follows the minimal contraction paths 𝑃 and 𝑃′,
respectively, where either of the following cases holds:

• Case 1: if 𝑃 and 𝑃′ intersect at some 𝑦 ∈ 𝐸# , but
with no common arc between them.

Suppose that 𝑦 forms a JOIN in 𝑅#, i.e. (𝑢, 𝑦), (𝑣, 𝑦),
where at least one of these components uses at least
one arc (𝑢!, 𝑦!) ∈ 𝐸VWX! in 𝑃, while at least one other
arc (𝑣(, 𝑦() ∈ 𝐸VWX(, where these components
correspond to the JOIN (𝑢, 𝑦), (𝑣, 𝑦) ∈ 𝐸# ,
respectively. Since 𝑃 and 𝑃′ are minimal contraction
paths from the source to the sink vertices of 𝑅# , we
know that 𝐶(𝑢!, 𝑦!) = 𝐶(𝑣(, 𝑦(). With these, if we
simulate the maximal activity 𝑆234! derivable from
𝑅VWX! through 𝑃, (𝑢, 𝑦) will not be impeded by (𝑣, 𝑦)
so that 𝑦 is reachable by the algorithm in terms of their
𝐶-values. Thus, the simulation of 𝑆234! can go on for
every such JOIN that goes through/intersects with 𝑃
until the last reachability profile of 𝑆234! . The same is
true if we simulate the maximal activity 𝑆234(
derivable from 𝑅VWX(through 𝑃′. Thus, we would be
able to prove this case by building the looped RDLT
𝑅899: of 𝑅# as per Definition 4. Thereafter, we build a
composite activity 𝑆″ from using 𝑆234! and 𝑆234(of
these MAS, and therefore show that 𝑆234! and 𝑆234(
do not impede each other.

• Case 2: if 𝑃 and 𝑃′ share a common arc (𝑥, 𝑦) in 𝐸#.

To prove this case, we look at the execution of the
activities 𝑆234! and 𝑆234(that are derivable from MAS
𝑅VWX! and 𝑅VWX(that use 𝑃 and 𝑃′, respectively. Let
f𝑥0 , 𝑦0g ∈ 𝐸VWX

0 be the arc in 𝑅VWX
0 that corresponds

 SciEnggJ Vol. 17 | No. 01 | 2024 198

to (𝑥, 𝑦) ∈ 𝐸# , 𝑗 = 1,2 . With this, we have the
following sub-cases to prove:

– if (𝑥, 𝑦) is not part of at least one loop in 𝑅#.

For this case, we start by building the looped
RDLT 𝑅899: of 𝑅# as per Definition 4 using
𝑅VWX! and 𝑅VWX(as in Case 1 above.

 Similarly, we construct a composite activity 𝑆″
using 𝑆234! and 𝑆234(for 𝑅899: . Suppose we
simulate 𝑆234! in 𝑅899: from its source until we
use all its components. Since (𝑥!, 𝑦!) is not part
of a loop, its 𝐿-value is 1 in 𝑅VWX! . Note that
𝑆234! uses (𝑥!, 𝑦!) exactly once. Then, the
simulation of 𝑆″ moves into simulating 𝑆234(
through the corresponding components in 𝑅899:
until the sink is reached. In the same manner,
𝐿(𝑥(, 𝑦() = 1 in 𝑅VWX(, as well as 𝑆″ uses its
corresponding arc exactly once. Since 𝑅# is
separable, we know that 𝐿(𝑥, 𝑦) ≥ 2. Moreover,
𝐿(𝑥!, 𝑦!) + 𝐿(𝑥(, 𝑦() ≥ 𝑒𝑅𝑈(𝑥, 𝑦) . Thus, we
would be able to simulate the entire composite
activity 𝑆″ since 𝐿(𝑥, 𝑦) allows it so.

– if (𝑥, 𝑦) is part of at least one loop in 𝑅#.

For this case, we show that 𝑅# cannot be
separable if there exists a shared (𝑥, 𝑦) between
𝑅VWX! and 𝑅VWX(where (𝑥, 𝑦) is part of at least
one loop in 𝑅#.

We prove this by contradiction. That is, 𝑅# is
separable if (𝑥, 𝑦) is a shared component of
𝑆234! and 𝑆234(derivable from 𝑅VWX! and 𝑅VWX(,
respectively, where (𝑥, 𝑦) is part of at least one
loop in 𝑅#.

Assume that 𝑅# is separable. Furthermore, let
(𝑥, 𝑦) be a (P)CA of 𝑅#.

Let (𝑥!, 𝑦!) ∈ 𝐸VWX! and (𝑥(, 𝑦() ∈ 𝐸VWX! both
correspond to the shared (P)CA (𝑥, 𝑦) ∈ 𝐸# .
Since 𝑅# is separable, we know that 𝐿(𝑥, 𝑦) ≥
𝐿(𝑥!, 𝑦!) + 𝐿(𝑥(, 𝑦() (Definition 9). However,
using Definition 8, we know that 𝐿(𝑥!, 𝑦!) =
𝐿(𝑥(, 𝑦() = 𝐿(𝑥, 𝑦) . Note that by the
construction of EVSA of 𝑅# , 𝐿(𝑥, 𝑦) =
𝑒𝑅𝑈(𝑥, 𝑦) . With this, we see that 𝐿(𝑥, 𝑦) ≥
2𝐿(𝑥, 𝑦) which is a contradiction, thus our claim
that 𝑅# is separable is not true.

In a similar light, we will also prove that if 𝑆234!
and 𝑆234(share (𝑥, 𝑦), where (𝑥, 𝑦) is part of at
least one loop, there is no composite activity 𝑆″
that can be constructed from these activities, i.e.
𝑆234! and 𝑆234(impede each other. We prove
this again by contradiction. That is, suppose that
a composite activity 𝑆″ exists from 𝑆234! and
𝑆234(that shares (𝑥, 𝑦) of 𝑅# where (𝑥, 𝑦) is
part of at least one loop.

Let 𝑐! by the cycle that involves (𝑥!, 𝑦!) in
𝑅VWX! . Similarly, let 𝑐(by the cycle that involves
(𝑥(, 𝑦() in 𝑅VWX(. Since 𝑆234! is a maximal
activity derivable from 𝑅VWX! , it would therefore
use the maximum number of times that (𝑥!, 𝑦!)
is usable through 𝑐!, i.e. 𝐿(𝑥!, 𝑦!) = 𝑒𝑅𝑈(𝑥, 𝑦).

By this time, we have already exhausted the
usability of (𝑥, 𝑦) such that 𝑆234(cannot be
simulated in 𝑅899: when we enter 𝑐(to
use/reuse (𝑥(, 𝑦(). Thus, 𝑆″ is not realizable as
a composite activity for the source and sink of
𝑅899:, i.e. a contradiction to our claim.

Next, we prove that if for every pair of MAS 𝑅VWX! and 𝑅VWX(of
𝑅# , with their maximal activities 𝑆234! and 𝑆234(, 𝑆234! and
𝑆234(do not impede each other, then 𝑅# is separable.

To prove this case, we look at every common arc (𝑥, 𝑦) ∈ 𝐸#
that has corresponding arcs f𝑥0 , 𝑦0g ∈ 𝐸VWX

0 , 𝑗 = 1,2, that is
common between 𝑅VWX! and 𝑅VWX(. Since each 𝑅VWX

0 is a
maximal activity structure, we know that 𝐿f𝑥0 , 𝑦0g is either 1 or
𝐿(𝑥, 𝑦). In either case, we know that 𝑆234! and 𝑆234(do not
impede each other. In other words, if we now include all of the
maximal activities 𝑅VWX

0 of 𝑅# , we can build a composite
activity 𝐶 = 𝑅VWX! ⊕𝑅VWX(⊕…⊕𝑅VWX

/# , ki ∈ ℕ, that can be
simulated in the looped RDLT of 𝑅899: of 𝑅#. If we look at the
number of times n ∈ ℕ that f𝑥0 , 𝑦0g is used in 𝐶, we see that 𝑛
is either (a) exactly the number of maximal activities that use
(𝑥, 𝑦) (i.e. for the first case – (𝐿f𝑥0 , 𝑦0g = 1), and with
𝑒𝑅𝑈(𝑥, 𝑦) = 0, or (b) equal to 𝑒𝑅𝑈(𝑥, 𝑦) since there is exactly
one MAS 𝑅VWX

0 , that use (𝑥, 𝑦) (i.e. for the second case –
𝐿f𝑥0 , 𝑦0g = 𝑒𝑅𝑈(𝑥, 𝑦)) , where 1 ≤ 𝑗 ≤ 𝑘# . In both cases,
𝐿(𝑥, 𝑦) ≥ 𝑛 ≥ 𝑒𝑅𝑈(𝑥, 𝑦). With this, we have proved that 𝑅# is
separable.

�

Corollary 1. Given two activities 𝑆 and 𝑆′ of 𝑅#, let 𝐴𝑐𝑡𝐺𝑟(𝑆)
and 𝐴𝑐𝑡𝐺𝑟(𝑆′) be their maximal activity groups where
𝐴𝑐𝑡𝐺𝑟(𝑆) ≠ 𝐴𝑐𝑡𝐺𝑟(𝑆′).

For every pair of activities 𝐴 ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆) and 𝐵 ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆′) in
𝑅, 𝑅# is separable if and only if 𝐴 and 𝐵 do not impede each
other.

Proof. Follows from Theorem 3. �

Theorem 4. Given a set of MAS of size 𝑘# for an expanded
level- 𝑖 vertex-simplification 𝑅# of an RDLT 𝑅 , 𝑖 ∈ {1,2} , it
takes 𝑂(|𝐸|') time and space complexity to determine if 𝑅 is
separable.

Proof. We initially express the problem of determining a
distribution of the L-value of each arc in 𝑅# from among its
given set of MAS. This can be expressed as a system of linear
equations, as shown below. Thereafter, we solve this system
such that we are able to realize if the input RDLT 𝑅 is indeed
separable.

⎝

⎜⎜
⎛
𝐿%𝑒!,!' 𝐿%𝑒!,#' … 𝐿%𝑒!,$!'
𝐿%𝑒#,!' 𝐿%𝑒#,#' … 𝐿%𝑒#,$!'
⋮ ⋮ … ⋮

𝐿%𝑒|&!|,!' 𝐿%𝑒|&!|,#' … 𝐿%𝑒|&!|,$!'
⎠

⎟⎟
⎞

⎝

⎜
⎛

𝐼!(𝑒')
𝐼#(𝑒')
⋮

𝐼$!%𝑒|&!|'
⎠

⎟
⎞
≤

⎝

⎜
⎛

𝐿(𝑒!)
𝐿(𝑒#)
⋮

𝐿%𝑒|&!|'
⎠

⎟
⎞
,

where 𝐿f𝑒Y,Zg ∈ {0,1, 𝐿(𝑒Y)} , 1	 ≤ 𝑟	 ≤ |𝐸#| , 1	 ≤ 𝑠	 ≤ 𝑘# ,
𝐿(𝑒Y) ≥ 1, and

𝐼Z(𝑒Y) = �1, if ∃(𝑢, 𝑣) ∈ 𝐸VWXZ where (𝑢, 𝑣) = 𝑒Y
0, otherwise.

The vector [𝐼!(𝑒Y), 𝐼((𝑒Y), … , 𝐼Z(𝑒Y), … , 𝐼/#(𝑒Y)] accounts for
the inclusion or exclusion of 𝑒Y in the pruned contraction path

Vol. 16 | No. 01 | 2023 SciEnggJ 199

from the source to the sink of with respect to the MAS 𝑅VWXZ of
𝑅# , 1 ≤ 𝑠 ≤ 𝑘# . Whenever 𝑒Y ∈ 𝐸# has its corresponding arc
𝑒Y,Z ∈ 𝐸VWXZ included in 𝑅VWXZ , i.e. 𝐼Z(𝑒Y) = 1 , its 𝐿f𝑒Y,Zg is
either 1 or 𝐿(𝑒Y) as per Definition 8, otherwise 0(i.e. excluded
from 𝑅VWXZ , with 𝐼Z(𝑒Y) = 0).

With these, our system of linear equations accounts for the
connectivity, 𝐿-values, and 𝐶-values of 𝑅# and its set of MAS.
Thus, a solution to this system establishes a set of 𝐿-values of
the arcs for each MAS of 𝑅# that establishes the separability of
𝑅# as per Definition 9.

Solving a system of linear equations is known to be polynomial-
time and -space solvable, i.e. 𝑂(𝑛'), where 𝑛 is the number of
linear equations involved in the problem(Golub and Van Loan
1996). For our second problem of determining if 𝑅 is separable,
𝑛 corresponds to |𝐸#|	which is 𝑂(|𝐸|) . Thus, this problem
entails 𝑂(|𝐸|') time and space complexity.

◼

From Theorem 4, we were able to establish that should a system
designer start with a known 𝑘#-sized set of MAS for 𝑅#, realizing
if each 𝑅# is separable runs in polynomial time. Regarding the
hardness of determining whether an RDLT 𝑅 is separable, a
solution to this problem would entail that we first determine the
set of MAS for each of its expanded vertex simplifications 𝑅!
and 𝑅(. Thereafter, we can determine if 𝑅 is separable by
looking at the relationships of their 𝐿-values. In particular, the
first problem may need us, at worst, to enumerate all possible
(elementary) paths from the source to the sink vertex of each 𝑅#.
This takes an exponential number of such paths.

Thus, this would also be the number of contraction paths that the
MCA can establish for 𝑅# . Thus, our initial problem in
identifying all the MAS is reducible to a well-known NP-hard
problem(Cormen et al. 2009) of such path enumeration. Given
this insight, we pose the following conjecture:

Conjecture 1. Determining if an input RDLT 𝑅 is separable is
an NP-hard problem.

3. Results and Discussion

Through this research, we were able to establish new concepts
and techniques to separate an input RDLT into coherent
substructures that are usable to represent or generate sets of
activities by some group similarities; help in targeted model
decomposition or transformation; facilitate efficient workflow
analysis; and provide insights on how these are useful in
building parallel profiles in RDLTs. We were able to also
establish representatives of each of these groups for examining
the impact of shared components and their presence in cycles
within and across such groups. In summary, we established and
proved the following results as shown in Table 1.

Table 1: Summary of the established definitions, algorithms, and
proved theorems of this paper.

Result Reference
A. Introduced Definitions
1 Maximal Activity Definition 3
2 Looped RDLT Definition 4
3 Composite Activity Definition 5
4 Non-impeding Activities Definition 6
5 Impedance-free RDLT Definition 7
6 Maximal Activity Structure (MAS) Definition 8
7 Separable RDLT Definition 9
B. Algorithm
1 The Modified Contraction Algorithm

(MCA)
Algorithm 1

Result Reference
C. Proved Theorems
1 Impedance between a maximal activity and another

activity
(with a loop) that belong to the same activity group

Theorem 1

2 MCA produces a minimal contraction
structure in 𝑅#

Lemma 1

3 Time and space complexity of MCA Lemma 2
4 Each MAS in 𝑅# generates a maximal

activity therein in 𝑅#
Theorem 2

5 Relationship of Impedance-free and
separable RDLTs

Theorem 3

6 Separable RDLTs and the impedance
between their MASs

Corollary 1

7 Time and space complexity of
verifying separability of RDLTs given
a set of MAS for its set of expanded
vertex simplifications

Theorem 4

Some Notes on RBS and Parallel Activities

As we have established above in our results, the separability of
RDLTs mainly focuses on the feasibility of fragmenting them
through their 𝐶 - and 𝐿 -attributes as reflected in the looped
versions of the vertex simplifications of 𝑅. That is, the 𝐶-values
drive this fragmentation by imposing that the necessary set of
conditions for reachability is accounted for in entire fragments.
Meanwhile, 𝐿-values drive it by imposing that the arcs inside
each fragment are reusable despite that such arcs appear in
separate fragments due to multiple (maximal) activities sharing
them.

With our use of looped RDLTs to sequentially simulate sets of
activities to verify impedance with respect to each other, we
have momentarily excluded the case wherein such activities may
affect each other in terms of the 𝑀-attribute, i.e. their use of RBS.
That is, we pose as a future research endeavor the parallelized
simulation of activities, alongside their sharing and use of RBS
components in overlapping time intervals. For this case, resets
may cause the cancellation of ongoing processes in at least one
of these activities, thereby such activity never completes and/or
may trigger unexpected behavior in 𝑅. As a preliminary step to
manage these issues on parallel activities, we offer the initial
definition below.

Definition 10. (Reset-safe RDLT)

An impedance-free RDLT 𝑅 is reset-safe if for every pair of
maximal activities 𝑆 and 𝑆′ of the input-output pair [𝑠, 𝑓], either
of the following holds:

• if 𝑆 and 𝑆′ are checking/traversing arcs inside an RBS
𝐺 of 𝑅, both will exit an outbridge of a vertex in 𝐺 at
the same time,

• if 𝑆 and 𝑆′ do not use 𝐺 at the same time, or
• if 𝑆′ and 𝑆′ do not use 𝐺 at all.

In addition to Definition 10, we have the following conjecture
with regard to the relationship of impedance-free and separable
RDLTs in the context of parallel activities:

Conjecture 2: 𝑅 is reset-safe if 𝑅 is separable and if for every
pair of MAS 𝑅VWX and 𝑅′VWX of 𝑅# of 𝑅, the following hold:

1. for every non-RBS (𝑥, 𝑦) ∈ 𝐸 , every path leading
from (𝑥, 𝑦) to an in-bridge of an RBS 𝐺 is an
elementary path,

2. for every out-bridge (𝑢, 𝑣) ∈ 𝐸 of 𝑢 ∈ 𝑉 of 𝐺, and its
corresponding arc (𝑢!, 𝑣!) ∈ 𝐸VWX f(𝑢(, 𝑣() ∈

 SciEnggJ Vol. 17 | No. 01 | 2024 200

𝐸′VWXg, the number of contraction steps from the 𝑠! to
𝑣! in 𝑅VWX is equal to the number of contraction steps
from 𝑠(to 𝑣(in 𝑅′VWX , where 𝑠! and 𝑠(are both
sources or both targets of looping arcs in 𝑅VWX and
𝑅′VWX, respectively.

4. Conclusions and Future Work

Since RDLTs were introduced in (Malinao 2017), there have
been approaches in subsequent literatures that extract sub-
profiles in such models either via model decomposition or model
transformations. These approaches aim to extract smaller sets of
information from an input RDLT to help generate simpler and/or
smaller models. These were previously done with manual labor
and human intervention to choose a substructure or behavior (via
activity extraction) from the input RDLT. Through the concepts
and techniques of our study, we are now able to isolate these
substructures and sets of behaviors through the extraction of
MAS and their respective maximal activity groups. These MAS
and maximal activity groups, and particularly their maximal
activities, can be then used to analyze the RDLT in a more
efficient manner rather than by looking at individual
substructures or activities.

One of the most important contributions of this paper is that the
results herein usher the concept of shared components between
and among different (maximal) activities in 𝑅(𝑅#). It also offers
a view of the impact of having shared components that are
involved in loops. We can realize that this can result in
deadlocks in workflows despite a sequential yet consecutive
execution of activities that share such components. That is,
activity completion can never be accomplished for at least one
of these activities. This information can now serve as a valuable
input to the goal of parallelization of activities in RDLTs that
represent real-world systems with parallelizable structures and
behaviors.

Lastly, we have also provided in this paper a jumpstart to
modeling and analyzing RDLTs with parallel profiles that
include reset structures and behaviors. With this, we foresee and
recommend as future work to extend the activity extraction
algorithm in literature as a parallel algorithm. This would also
mean opening the field of multidimensional workflow modeling
to properties related to having parallel activities such as
generalized soundness and its weakened notions(van der Aalst
1996); benchmarking and transformations of models that exhibit
maximally parallelizable profiles; among others.

CONFLICT OF INTEREST

The authors of this paper do not have any financial, personal, or
professional relationship with other individuals or organizations
that could be construed as conflict of interest in accomplishing
this study.

CONTRIBUTIONS OF INDIVIDUAL AUTHORS

Dr. Malinao is the main contributor with respect to the
formulation of the concepts, techniques, and proofs of this paper.
Meanwhile, Dr. Juayong ensured and verified the thoroughness,
completeness, and correctness of these contents.

REFERENCES

(Calvo and Malinao 2023) Calvo G, Malinao J. Mapping

Hierarchies and Dependencies from Robustness Diagram with
Loop and Time Controls to Class Diagram. In: Kabassi K,

Mylonas P, Caro J. (eds) Novel & Intelligent Digital Systems:
Proceedings of the 3rd International Conference (NiDS 2023).
Lecture Notes in Networks and Systems. Vol. 783. Cham:
Springer, 2023:23-42.

(Cormen et al. 2009) Cormen T, Leiserson C, Rivest R, and

Stein C. Introduction to Algorithms. 3rd Edition. MIT Press,
2009. ISBN-13: 978-0262033848.

(Delos Reyes et al. 2018) Delos Reyes R, Agnes K, Malinao J,

Juayong RA. Matrix Representation and Automation of
Verification of Soundness of Robustness Diagram with Loop
and Time Controls. Proceedings of the Workshop on
Computation, Theory, and Practice (WCTP), 2018.

(Eclipse and Malinao 2023a) Eclipse K, Malinao, J. Model

Decomposition of Robustness Diagram with Loop and Time
Controls to Sequence Diagrams. In: Kabassi K, Mylonas P,
Caro J. (eds) Novel & Intelligent Digital Systems: Proceedings
of the 3rd International Conference (NiDS 2023). Lecture
Notes in Networks and Systems. Vol. 784. Cham:Springer,
2023:40-54.

(Eclipse and Malinao 2023b) Eclipse, K, Malinao, J. Model

Decomposition of Robustness Diagram with Loop and Time
Controls to Sequence Diagrams using Activity Groups. In:
Pre-proceedings of the Workshop on Computation: Theory
and Practice(WCTP), Hokkaido, Japan. 2023.

(Golub and Van Loan 1996) Golub G, Van Loan C. Matrix

Computations. 3rd edition. Johns Hopkins University Press.
1996. ISBN 978-0-8018-5414-9.

(Hauser et al. 2006) Hauser R, Friess M, Kuster J, Vanhatalo J.

Combining Analysis of Unstructured Workflows with
Transformation to Structured Workflows. In: Proceedings of
the 2006 10th IEEE International Enterprise Distributed
Object Computing Conference (EDOC’06), 2006. ISBN:0-
7695-2558-X.

(Ko et al. 2009) Ko R, Lee S, Lee EW. Business process

management (BPM) standards: a survey. Business Process
Management Journal. 2009; 15 (5):744-491.

(Kotb and Baumgart 2005) Kotb YT, Baumgart AS. An

extended Petri net for modeling workflow with critical
sections. IEEE International Conference on e-Business
Engineering (ICEBE’05), Beijing, China, 2005: 134-141.

(Leopold et al. 2015) Leopold H, Mendling J, Gunther O. What

we can learn from quality issues of BPMN models from
industry, IEEE Software 33(4). 2015;1-9.

(Lopez et al. 2020) Lopez JCL, Bayuga, MJ, Juayong RA,

Malinao J, Caro J, Tee M. Workflow models for integrated
disease surveillance and response systems, Theory and
Practice of Computation, London: Taylor and Francis Group,
2020.

(Malinao 2017) Malinao J. On building multidimensional

workflow models for complex systems modeling. Dissertation,
Technische Universit𝑎̈t Wien. reposiTUm, 2017.

(Malinao and Juayong 2023a) Malinao J, Juayong, RA. Reset

Profiles and Classical Soundness in Robustness Diagrams
with Loop and Time Controls. Pre-proceedings of the
Workshop on Computation: Theory and Practice(WCTP),
Hokkaido, Japan, 2023.

Vol. 16 | No. 01 | 2023 SciEnggJ 201

(Malinao and Juayong 2023b) Malinao J, Juayong RA. Classical
Soundness in Robustness Diagram with Loop and Time
Controls. Philippine Journal of Science. Vol. 152(6B), 2023:
2327–2342.

(Malinao et al. 2013) Malinao J, Lozano LM, Pascua S, Chua

RB, Magboo MS, Caro J. A Metric for User Requirements
Traceability in Sequence, Class Diagrams, and Lines-of-Code
via Robustness Diagrams. Proceedings in Information and
Communications Technology. Vol. 7, Springer, 2013: 50-63.

(Medeiros et al. 2005) Medeiros CB, Perez-Alcazar J,

Digiampietri L, Pastorelo GZ Jr, Santanche A, Torres RS,
Madeira E, Bacarin E. WOODSS and the Web: Annotating
and Reusing Scientific Workflows. SIGMOD Record. 34,
2005:18-23.

(Sulla and Malinao 2023) Sulla, CN, and Malinao, J. Mapping

of Robustness Diagram with Loop and Time Controls to Petri
Net with Considerations on Soundness. In: Kabassi, K.,
Mylonas, P., Caro, J. (eds) Novel & Intelligent Digital
Systems: Proceedings of the 3rd International Conference
(NiDS 2023). Lecture Notes in Networks and Systems, vol
784. Cham: Springer, 2023:338-353.

(van der Aalst 1996) van der Aalst WMP. Structural

Characterizations of Sound Workflow Nets. Computing
Science Reports 96/23. Einhoven University of Technology,
1996.

(van der Aalst 2000) van der Aalst WMP. Workflow

Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In Business Process Management: Models,
Techniques, and Empirical Studies. Springer Berlin
Heidelberg, 2000:161-184

(van Hee et al 2003) van Hee K, Sidorova N, Voorhoeve M.

Soundness and Separability of Workflow Nets in the Stepwise
Refinement Approach. In: van der Aalst, W.M.P., Best, E.
(eds) Applications and Theory of Petri Nets 2003. ICATPN
2003. Lecture Notes in Computer Science. Vol 2679. Springer
Berlin Heidelberg, 2003.

