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ABSTRACT 
 
 

n this study, we introduced and formalized the concept of 
separability of a multidimensional workflow model known 
as Robustness Diagrams with Loop and Time Controls. 
Separability reflects structures and behaviors in such 
models that are usable in effective and efficient modular 

design and analysis and establishing parallelizable activities of 
the system they represent. Through this research, we were also 
able to identify maximal substructures and activities that can 
become representatives of smaller ones with similar features 
within their respective activity groups. These maximal profiles, 
along with the relevant requirements for sharing of components, 
establish separable workflows. Furthermore, we also established 
the requirements of impedance-free workflows where activities 
therein do not interfere with each other from initiation to their 
completion. Then, we established the relationship between the 
separability and impedance-freeness of these workflows. 
Additionally, we provided proof of the correctness and time and 
space complexity of the algorithm and verification strategies that 
are needed or relevant in establishing separable and impedance-

free workflows. Lastly, we posed recommendations for future 
research on extending this study towards the domain of 
parallelization of activities in these workflows. 
 
 
1. Introduction 
 
Real-world systems can be represented by models in various 
formats, levels of detail, abstractions, and complexity. These 
systems are analyzed for their satisfaction with some quality 
criteria or well-known workflow properties with the hopes of 
profiling what they can do or solve. In the field of system 
modeling and model verification, there is a rich and diverse set 
of frameworks and tools that aid in tasks from system planning, 
design and analysis, execution, maintenance, and evolution. 
Workflows such as Petri Nets, Business Process Modelling and 
Notation (BPMN)(Ko et al. 2009), WOODSS (WOrkflOw-
based Spatial Decision Support System(Medeiros et al. 2005), 
the Unified Modelling Language (UML), Robustness Diagrams 
with Loop and Time Controls (RDLT)(Malinao 2017), among 
others, are such type of tools. Workflows are founded upon 
system representation built under three dimensions (van der 
Aalst 1996), namely, (a) resource, (b) process, and (c) case. Each 
of these dimensions would capture different sets of information 
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about the execution of activities that systems as described 
through their models. For example, UML Class Diagrams are 
uni-dimensional models that only focus on conveying the 
resource dimension of a system, i.e. objects that act upon their 
designated roles. Meanwhile, Petri Nets can express information 
under the process dimension and case dimensions. They are used 
to show tasks that are designed in a sequential, conditional, 
iterative, and parallel manner. Furthermore, they provide a way 
for modelers to simulate such tasks to verify if the given Net 
satisfies proper termination and if there are no unusable 
components, i.e. the soundness property (van der Aalst 1996). 
At times, workflows such as BPMN and RDLTs can help system 
analysts express system information using all three workflow 
dimensions with some level of care and consciousness to not 
overwhelm users, induce workflow errors, and maintain a 
verifiable and scalable workflow model. With this power of 
representation, RDLTs, for example, have been used to model 
and analyze real-world systems, such as HVAC systems 
(Malinao 2017), integrated disease surveillance and response 
systems (Lopez et al. 2020), and Fujitsu Ten’s Computer Aided 
Multi-Analysis System Auto Test Tool (Malinao et al. 2013). 
 
Whenever models evolve in size and complexity to keep up with 
their representation of a reference system, the inherent question 
of its maintainability, composability, scalability, or verifiability 
arises. For example, when a Petri Net is formed as a set of 
smaller modules, wherein each of its modules is sound, 
soundness at the level of the integrated Net is not guaranteed 
(van der Aalst 2000). Workflow models that represent activities 
that share components and/or resources can experience 
deadlocks or withdrawn active processes that can induce their 
non-completion of tasks. These can happen whenever 
submodules inside a model, or its entirety, are not properly 
designed or configured such that, regardless of the serialization 
or parallelization of such activities, this erroneous behavior 
would still manifest (Hauser et al. 2006, Kotb and Baumgart 
2005, van Hee et al. 2003). In the context of RDLTs and their 
nature on multidimensional system representation, approaches 
have been introduced to either decompose an input RDLT into 
simpler models having lower dimensions, e.g. Sequence 
Diagrams (Eclipse and Malinao 2023a), Petri Nets (Sulla and 
Malinao 2023), Class Diagrams (Calvo and Malinao 2023), for 
information management with cognizance of loss of information, 
or transformed into matrix representations (Delos Reyes et al, 
2018), along with the required matrix operations for activity 
simulation, for model verification. However, no literature to date 
has provided the concepts and techniques to obtain separable 
substructures that can facilitate effective and efficient module-
based analysis and model verification. Moreover, none of them 
has also analyzed the impact of multiple modules and/or system 
activities having shared components such that the completion or 
possible parallelization of processes therein comes into question. 
 
In this study, we address the abovementioned gaps in module-
based representation and analysis of RDLTs. More specifically, 
we establish the definitions, requirements, efficient algorithms, 
and design strategies, and prove theorems regarding the 
separability of substructures and activity profiles in RDLTs 
regardless of the sharing of components and complex attributes 
innate to these models such as its reset structures and behavior. 
 
Section 1.1 provides the basic notations, definitions, algorithms, 
and strategies for system representation and verification of 
RDLTs. We emphasize the concept and strategies around 
activity group (Eclipse and Malinao 2023b); structure-based 
computations on the reusability of components in activities in 
RDLTs that can have reset profiles; contraction paths to 
establish reachable components during process execution; and 
model simplification of RDLTs via vertex simplification for 
abstracted and level-based views of an input RDLT. 

Section 2 provides our proposed methodology for establishing 
separable structures and profiles in RDLTs. We first establish 
the role of maximal activities of activity groups relative to other 
(maximal) activities in the same or different activity groups. We 
also improve the contraction path discovery in RDLTs to 
effectively extract minimal substructures, appending looping 
information in them as a post-processing step, to be able to 
generate maximal substructures in RDLTs. These maximal 
substructures are then used to generate their corresponding 
activity groups. By combining our knowledge of the reusability 
of components in activities, as well as our results on these 
substructures, we establish separability for RDLTs and its 
complexity of verification. In Section 2, we also introduce the 
concept of a composite activity that is built upon smaller 
activities, albeit maximal within their respective groups, and 
reuse the activity extraction algorithm in literature (Malinao 
2017) on a transformed version of the input RDLT to determine 
impedance between/among the latter activities. With this, we 
establish impedance-free RDLTs. Through these results, we 
relate separable structures and maximal activity profiles of 
RDLTs concerning their impedance on activity completion, 
accounting for shared components between and/or among them. 
 
Finally, Sections 3 and 4 provide and summarize our results and 
contributions, as well as establish an initial approach and 
recommendation to extend our work in the domain of parallel 
profiles in RDLTs. 
 
1.1. Robustness Diagram with Loop and Time Controls 
 
We provide the definition of RDLT below. In the context of this 
study, the set ℕ of natural numbers is the set of positive integers. 
 
Definition 1. (Robustness Diagram with Loop and Time 
Controls) (Malinao 2017) 
 
A Robustness Diagram with Loop and Time Controls (RDLT) 
is a graph representation 𝑅 of a system that is defined as 𝑅 =
(𝑉, 𝐸, 𝑇,𝑀) where: 

• 𝑉 is a is a finite set of vertices. Each vertex can be of 
two types: an object or a controller. An object can be 
of two subtypes: a boundary or an entity. 
An object corresponds to a resource, e.g. person, file 
system, table, etc., while a controller corresponds to a 
task in a system. 

 
• 𝐸 is a finite set of arcs such that no two objects are 

connected. Furthermore, every arc (𝑥, 𝑦)  has the 
following attributes: 

– 𝐶: 𝐸 → 𝛴 ∪ {𝜀}  where 𝛴  is a finite non-
empty set of symbols and 𝜀  is the empty 
symbol. 𝐶(𝑥, 𝑦) ∈ 𝛴  means that 𝐶(𝑥, 𝑦)  is 
a symbol corresponding to a condition that 
is required to be satisfied, e.g. input/output 
requirement, to proceed from 𝑥  to 𝑦 . 
Meanwhile, 𝐶(𝑥, 𝑦) = 𝜀 means that there is 
no condition imposed by (𝑥, 𝑦) or signifies 
that 𝑥 is the owner object of the controller 𝑦. 

– L: E →  ℕ is the maximum number of 
traversals allowed on the arc. 

 
• Let 𝑇  be a mapping such that 𝑇(𝑥, 𝑦) = (𝑡!, … , 𝑡") 

for every (𝑥, 𝑦) ∈ 𝐸  where 𝑛 = 𝐿(𝑥, 𝑦)  and 𝑡#	 ∈
	ℕ		is the time a check or traversal is done on (𝑥, 𝑦) by 
some algorithm’s walk on 𝑅. 
 

• 𝑀:𝑉 → {0,1} indicates whether 𝑢 ∈ 𝑉 is a center of 
an RBS. An RBS is a substructure of 𝐺% of 𝑅 that is 
induced by a center 𝑢 ∈ 𝑉, i.e. if 𝑀(𝑢) = 1, and the 
set of controllers owned by 𝑢. (𝑥, 𝑦) is an in-bridge of 
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𝐺%  if 𝑥  is not a vertex in 𝐺%  but 𝑦  is. Conversely, 
(𝑥, 𝑦) is an out-bridge of 𝐺% if 𝑥 is a vertex in 𝐺%, but 
𝑦  is not. Lastly, a pair of arcs (𝑎, 𝑏) and (𝑐, 𝑑) are 
type-alike with respect to 𝑦  if (𝑎, 𝑏)  and (𝑐, 𝑑)  are 
both in/out-bridges of 𝑦, or both are not. Note that an 
RBS has only one center. 

 
Shown in Figure 1 is an RDLT 𝑅 with 𝑥!(𝑥&) as its source(sink) 
and has one RBS whose center is 𝑥' . The center 𝑥'  has two 
owned controllers, i.e. 𝑥( and 𝑥). The entire RBS is annotated 
with a circle with dashed lines for emphasis. The in-bridge of 𝑥' 
is (𝑥!, 𝑥') , while 𝑥)  has the out-bridge (𝑥), 𝑥&) . The arcs 
(𝑥(, 𝑥)) and (𝑥', 𝑥)) are type-alike relative to 𝑥) since they are 
both not in/out-bridges of 𝑥). Meanwhile, (𝑥(, 𝑥)) and (𝑥), 𝑥&) 
are not type-alike with respect to 𝑥)  since (𝑥(, 𝑥))  is not an 
in/out-bridge of 𝑥) while (𝑥), 𝑥&) is its out-bridge. By looking 
at the 𝐶 -values, it can be realized that 𝑥*  is an AND-
JOIN(Malinao 2017), i.e. it requires that the conditions ‘a’ and 
‘b’ are both satisfied before reaching 𝑥*. Meanwhile, 𝑥) forms 
an OR-JOIN(Malinao 2017) since there are no conditions that 
need to be satisfied to reach 𝑥) from either of its parents 𝑥( and 
𝑥' . Had there been an in-bridge (𝑥*, 𝑥))  for 𝑥)  with a 𝛴 -
condition, e.g. ‘a’, this OR-JOIN is unaffected by this condition 
due to type-alikeness of these arcs; thus a traversal to 𝑥) from 
either 𝑥(  or 𝑥'  pushes on as long as the maximum allowable 
times, e.g. 𝐿(𝑥(, 𝑥)), has not been exhausted during the ongoing 
process executions of an activity inside the RBS. 
 

 
Figure 1: RDLT with a reset-bound subsystem with center at 𝒙𝟑 , 
where 𝑴(𝒙𝟑) = 𝟏. 

For simplicity of discussions, we shall focus on RDLTs with one 
source and one sink vertex. Nevertheless, readers can use the 
concept of an extended RDLT (Malinao 2017) for RDLTs with 
more than one of these vertices and apply the concepts and 
strategies of this paper as per usual. An extended RDLT of an 
input RDLT is adopted from the concept of a Workflow Net (van 
der Aalst 1996) of a given Petri Net. That is, the extended RDLT 
adopts all the information of the input RDLT as well as it 
contains one dummy source 𝑖 (sink 𝑜) vertex that is connected 
to each original source 𝑠  (sink 𝑓 ) vertex of the input 𝑅 , 
establishing an OR-SPLIT(AND-JOIN)(Eclipse and Malinao 
2023a) structure in this connection, i.e. 𝐶(𝑖, 𝑠) = 𝜀 (distinct 
𝐶(𝑓, 𝑜) ∈ 𝛴) relative to other members of the AND-JOIN), and 
𝐿-value set to 1. In the context of our research, we modify this 
extension by setting an OR-JOIN at the sink 𝑜, rather than the 
usual AND-JOIN, and the 𝐿-value to a positive integer 𝑛. We 
call this modification the weakly-extended RDLT. We shall 
discuss in later sections an optimal value for 𝑛 with respect to 
RDLT model separability. 
 
The so-called activity profile (Malinao 2017) describes an 
activity that a system, represented by an RDLT 𝑅 , performs 
through its set of components and requirements for execution 
that they have. An activity profile 𝑆 = {𝑆(1), 𝑆(2),… , 𝑆(𝑘)}, 𝑘 
∈ ℕ, is a set of reachability configurations 𝑆(𝑗), such that 

every 𝑆(𝑗)  contains the set of components (i.e. arcs) that is 
reached/used at time step 𝑗 starting from the source towards the 
sink of 𝑅 . A depth-first search algorithm called the activity 
extraction algorithm(Malinao 2017) is used to extract one 
activity from 𝑅. This algorithm considers the arc attributes of 𝑅 
to know if a component can be (re)used in an activity, e.g. if its 
reuse has already reached the maximum allowable times of use 
as per its 𝐿-attribute values. Although this 𝐿-value of each arc 
(𝑥, 𝑦) is already known by design-time, the reusability of (𝑥, 𝑦) 
can be extended by placing this arc inside an RBS. Whenever an 
activity exits from the boundary of an RBS, the dynamic 
information stored in its 𝑇 -attribute value that indicates the 
actual number of uses of (𝑥, 𝑦) inside the recent execution of 
tasks inside the RBS is reset to 0. Thus, if this RBS is reused as 
part of the activity, (𝑥, 𝑦) can be used again at most 𝐿(𝑥, 𝑦) 
times. As an example, if the activity traverses (𝑥), 𝑥&) in Figure 
1, (𝑥(, 𝑥)) is reusable even if it was used in a prior time step and 
its 𝐿-value is just 1. 
 
From Figure 1, we can have an activity profile 𝑆  with its 
reachability configurations 𝑆(1) = {(𝑥!, 𝑥+)} , 𝑆(2) =
{(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆(3) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆(4) =
{(𝑥*, 𝑥+)} , 𝑆(5) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆(6) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)}, 𝑆(7) = {(𝑥*, 𝑥&)}. 
 
An RDLT can have multiple activities that can be extracted from 
it using the activity extraction algorithm. Through these 
activities, an input RDLT can be checked for certain behavior or 
satisfaction of model properties, e.g. proper termination, and 
utility of all its components – i.e. soundness (van der Aalst 1996). 
However, this checking can take a significant amount of time 
and space because there are as many activity profiles as there are 
paths from the source 𝑠 to the sink 𝑓, inclusive of repeatable 
paths induced from loops and the 𝐿-values of the arcs of 𝑅. With 
this, previous literature would introduce verification techniques 
for RDLT properties by use of the structural information in 
RDLTs. At times, this structural information would also be used 
to decompose RDLTs and transform the decomposed 
components into uni- or bi-dimensional models such as Petri 
Nets, the UML's Sequence Diagram, Class Diagrams, etc. This 
decomposition can aid in a more targeted analysis of some 
aspects of the input RDLT using some of its underlying 
substructures. As the latter models have limited syntax to 
represent all three workflow dimensions, it is expected that such 
limitation would also be present in fully representing the RDLT 
or its substructures. 
 
Paper (Eclipse and Malinao 2023b) introduced the concept of 
minimal activity and activity groups in RDLTs as an aid for 
structural analysis and RDLT decomposition as presented in 
Definition 2. Every minimal activity is then used by a mapping 
in the paper to produce a set of sequence diagrams, and then 
integrated with loop fragments to be able to represent the activity 
group of each of these minimal activities. 
 
Roughly speaking, a minimal activity in an RDLT is an activity 
for a given source 𝑠 ∈ 𝑉 and an output sink 𝑓 ∈ 𝑉 for which 
there are no other activities for 𝑠 and 𝑓 would have a smaller set 
of arcs participating in an activity. Moreover, an activity group 
for an activity 𝑆, denoted as 𝐴𝑐𝑡𝐺𝑟(𝑆), is a set of activities that 
would have the same set of arcs as used in 𝑆 and/or with the 
addition of the looping arcs whose endpoints are visited using 
the arcs of 𝑆. A looping arc (𝑥, 𝑦) of a vertex 𝑦, as introduced in 
(Malinao 2017), is an arc in an RDLT that, when traversed, 
causes a reuse of 𝑦 and its descendants. Note that every minimal 
activity for [𝑠, 𝑓] would have no arc component that is reused in 
the activity, thus, no loops can be found among its components. 
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Definition 2. (Activity Group, Minimal Activity) (Eclipse 
and Malinao 2023b) 
 
Let 𝑆 = {𝑆(1), 𝑆(2),… , 𝑆(𝑘)}, 𝑘 ∈ ℕ, be an activity profile for 
the input-output pair [𝑠, 𝑓] of 𝑉 in RDLT 𝑅. An activity group 
of 𝑆 for [𝑠, 𝑓], denoted as 𝐴𝑐𝑡𝐺𝑟(𝑆), is a set of activities in 𝑅 
where for every 𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), 𝑆′ = {𝑆′(1), 𝑆′(2), …, 𝑆′(𝑘′)}, 
𝑘′ ∈ ℕ, the following hold: 

2. 𝐴 ∩ 𝐵 ≠ ∅,  where 𝐴 = ⋃#.!
/ 𝑆(𝑖)  and 𝐵 = ⋃0.!/1 𝑆′(𝑗) , 

and, 
3. without loss of generality, ∀(𝑦, 𝑥) ∈ 𝐵 ∖ (𝐴 ∩ 𝐵), 

(𝑦, 𝑥) is a looping arc of 𝑥 and ∃(𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐴 such 
that 𝑥 = {𝑎, 𝑏, 𝑐} and 𝑦 = 𝑑. 

 
𝐴𝑐𝑡𝐺𝑟234(𝑆) is a maximal activity group of 𝑆 if there is no 
activity group 𝐴𝑐𝑡𝐺𝑟′(𝑆)  of 𝑆  such that 𝐴𝑐𝑡𝐺𝑟234(𝑆) ⊂
𝐴𝑐𝑡𝐺𝑟′(𝑆). Meanwhile, the activity 𝑆2#" ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆) , where 
𝑆2#" = {𝑆2#"(1), 𝑆2#"(2),… , 𝑆2#"(𝑘2#")} , 𝑘2#" ∈  ℕ, is 
called a minimal activity of 𝐴𝑐𝑡𝐺𝑟(𝑆) if ∀𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟234(𝑆), 
⋃#.!
/"#$𝑆2#"(𝑖) ⊆ ⋃0.!/1 𝑆′(𝑗). 

 
From Figure 1, a minimal activity 𝑆2#"  is composed of 
𝑆2#"(1) = {(𝑥!, 𝑥+)} , 𝑆2#"(2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 
𝑆2#"(3) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆2#"(4) = {(𝑥*, 𝑥&)} ; one 
activity group for 𝑆2#" is 𝐴𝑐𝑡𝐺𝑟(𝑆2#") = {𝑆2#", 𝑆!, 𝑆(}, where; 

1. activity 𝑆!  is composed of 𝑆!(1) = {(𝑥!, 𝑥+)} , 
𝑆!(2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆!(3) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆!(4) = {(𝑥*, 𝑥+)} , 𝑆!(5) =
{(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆!(6) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 
𝑆!(7) = {(𝑥*, 𝑥&)} . 𝑆!  iterates through the AND-
SPLIT and AND-JOIN substructure only once, along 
the components of 𝑆2#" and the looping arc (𝑥*, 𝑥+). 

2. activity 𝑆(  is composed of 𝑆((1) = {(𝑥!, 𝑥+)} , 
𝑆((2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆((3) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆((4) = {(𝑥*, 𝑥+)} , 𝑆((5) =
{(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆((6) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 
𝑆((7) = {(𝑥*, 𝑥+)} , 𝑆((8) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 
𝑆((9) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆((10) = {(𝑥*, 𝑥&)} . 𝑆( 
iterates through the AND-SPLIT and AND-JOIN 
substructure twice, along the components of 𝑆2#" and 
the looping arc (𝑥*, 𝑥+). 

 
Note that the activity extraction algorithm cannot iterate through 
the split-join substructure the third time since it has exhausted 
the maximum allowable use of (𝑥*, 𝑥+), i.e. 𝐿(𝑥*, 𝑥+) = 2, and 
it is not inside an RBS so a reset thereof can extend the 
reusability of its components. There is no other activity group 
𝐴𝑐𝑡𝐺𝑟′(𝑆2#") of 𝑆2#" such that 𝐴𝑐𝑡𝐺𝑟(𝑆2#") ⊂ 𝐴𝑐𝑡𝐺𝑟′(𝑆2#"), 
thus 𝐴𝑐𝑡𝐺𝑟(𝑆2#") is a maximal activity group of 𝑆2#". 
 
Definition 2 opens the possibilities of a more efficient structural 
and behavioral analysis of RDLTs by simply looking at a set of 
the representatives of each activity group in an RDLT, rather 
than looking at every activity therein to conclude some 
properties in a model. However, rather than focusing on each of 
their minimal activities, we focus on each of their maximal 
activity – the activity in an activity group that contains the 
superset of arcs among all other activities therein. In Section 2, 
we shall show that this choice of representation is optimal as 
every maximal activity is usable for testing RDLTs at its limits 
as well as it is able to represent all the structures and behaviors 
of the other activities in its groups. Furthermore, we shall also 
show how they can be used as a helpful reference in determining 
parallelizable activities in RDLTs via some separation technique, 
with considerations of shared resources among separate 
activities as well as the presence of reset-bound subsystems.  
 
1.2. Extracting Minimal Activities in RDLTs 
A minimal activity for [𝑠, 𝑓]  in 𝑅  can be generated by 

identifying a substructure of 𝑅  for which a contraction 
path(Malinao 2017) from 𝑠 to 𝑓 can be established through this 
substructure. This contraction path accounts for the 
reachability/usability of an arc in 𝑅 for an activity profile by 
solely looking at its condition, i.e. 𝐶-value, apart from graph 
connectivity. 
 
Roughly speaking, a contraction of an arc (𝑥, 𝑦) collapses 𝑥 and 
𝑦  into one merged vertex 𝑧 . This contraction will only be 
possible if there is no other arc (𝑢, 𝑦), where 𝑥 ≠ 𝑢, 𝐶(𝑢, 𝑦) ⊆
⋃
∀#
{𝐶(𝑥, 𝑦)#} ∪ {𝜀} , and (𝑥, 𝑦)  and (𝑢, 𝑦)  are type-alike. Note 

that the contraction process can result in having multiple edges 
connecting two vertices. Thus, the notation 𝐶(𝑥, 𝑦)#  is the 𝐶-
value of the 𝑖67 arc connecting 𝑥 to 𝑦. 
 
Figure 2 shows a series of contractions from the source 𝑥! to the 
sink 𝑥& of 𝑅 in Figure 1. 
 

 
Figure 2: A contraction path from source 𝒙𝟏 to sink 𝒙𝟗 of 𝑹 in Figure 
1. 

1.3. Expanded Reusability of Arcs 
 
When determining various profiles of an input RDLT 𝑅, such as 
a substructure where there is a contraction path or behaviors 
such as system tasks that can be built from minimal activities, it 
had been demonstrated in the literature(Malinao and Juayong 
2023a, Malinao and Juayong 2023b, Malinao 2017) that the 
(expanded) vertex simplification of 𝑅  is highly useful. This 
technique has also been used to help prove various model 
properties such as the relaxed and classical soundness of RDLTs. 
 
The expanded vertex simplification algorithm (EVSA) (Malinao 
and Juayong 2023a) creates at least two RDLTs known as the 
level 1 and level 2 vertex simplified multi-graph (Cormen et al. 
2009) of controllers 𝑅! and 𝑅(, respectively. 𝑅! is composed of 
a set of vertices and (abstract) arcs corresponding to the vertices 
and arcs of 𝑅 that are found outside of or have at least one bridge 
in every RBS of 𝑅. Meanwhile, each 𝑅( is composed of a set of 
vertices and arcs corresponding to the vertices and arcs of 𝑅 that 
are found inside one RBS of 𝑅 . Since 𝑅!  only retains those 
vertices that have at least one bridge, rather than all vertices 
inside an RBS, 𝑅!  loses some of the details of the 𝐶- and 𝐿-
attributes of arcs found in paths internal to this RBS. 
Nevertheless, by establishing an abstract arc (𝑥′, 𝑦′)  in 𝑅! 
between these retained vertices 𝑥′ and 𝑦′, where their respective 
vertices 𝑥 and 𝑦 in 𝑅 have an internal path in the RBS of 𝑅, the 
reachability of 𝑦  from 𝑥  is still accounted in 𝑅(  via (𝑥′, 𝑦′) . 
EVSA then computes for the derived 𝐿 -value of (𝑥′, 𝑦′)  by 
determining the maximum, possible number of times that it is 
used by an activity in 𝑅. This computation looks at the set of 
paths and cycles, if any, that can involve/reach (𝑥, 𝑦) in this 
activity. Since (𝑥′, 𝑦′) represents components inside the RBS, 
this computation also considers resets that can extend the 
reusability of (𝑥, 𝑦)  in this activity. The overall sum for the 
reusability of each arc (𝑥, 𝑦)  in 𝑅  is called the expanded 
reusability of (𝑥, 𝑦) , denoted as 𝑒𝑅𝑈(𝑥, 𝑦) (Malinao and 
Juayong 2023b). 
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𝑅! (and 𝑅() inherits the 𝐶- and 𝐿-values of the arcs in 𝑅 to its 
own arcs, except for each abstract arc (𝑥′, 𝑦′) where 𝐶(𝑥′, 𝑦′) is 
set to 𝜀, and 𝐿(𝑥′, 𝑦′) the minimum expanded reusability of all 
the arcs along the path inside the RBS of 𝑅  represented by 
(𝑥′, 𝑦′) plus 1. Moreover, the 𝑀-values that establish centers and 
their induced RBS structures in 𝑅  are not taken into 𝑅!(𝑅() 
since 𝑅!(𝑅()  already represents connectivities outside(inside) 
each RBS. 
 
Figure 3 shows the level 1 and level 2 expanded vertex 
simplification of 𝑅 in Figure 1. Each arc has a label with the 
format 𝐶(𝑥, 𝑦) :(derived) 𝐿(𝑥, 𝑦)  (𝑒𝑅𝑈(𝑥, 𝑦)) . We have two 
abstract arcs in 𝑅!, i.e. (𝑥', 𝑥))! and (𝑥', 𝑥))( representing the 
internal paths 𝑥! → 𝑥( → 𝑥)  and 𝑥' → 𝑥) , respectively, in the 
input 𝑅. Since 𝑅 has no looping involved in its RBS, the level 2 
simplification 𝑅(  reflects the reusability of (𝑥', 𝑥))  as 0. 
(Malinao and Juayong 2023a) considers that each abstract arc 
(𝑥′, 𝑦′) should not control the reusability of other non-RBS arcs, 
thus the computation of 𝑒𝑅𝑈(𝑥′, 𝑦′)  adds 1 to the original 
reusability of (𝑥, 𝑦) in 𝑅 before extended reusability via its in-
bridges of its RBS are considered. With this, the 𝑒𝑅𝑈(𝑥', 𝑥)) is 
equal to 1 in 𝑅! , and the derived 𝐿 -value 𝐿(𝑥', 𝑥)) = 2 . 
Meanwhile, the split-join substructure in 𝑅  from 𝑥+  to 𝑥*  has 
each of its arcs (𝑢, 𝑣)  to have 𝑒𝑅𝑈(𝑢, 𝑣) = 2  since looping 
within this substructure is only possible twice due to the 
controlling of iteration via the 𝐿(𝑥*, 𝑥&) = 2. 
 

 
Figure 3: Expanded Vertex Simplifications of 𝑹 in Figure 1. Each arc 
(𝒙, 𝒚) in this figure has a label with the format 𝑪(𝒙, 𝒚):(derived) 𝑳(𝒙, 𝒚) 
(𝒆𝑹𝑼(𝒙, 𝒚)). 

With EVSA, we would be able to realize the reusability of 
RDLT components alongside the reset profiles of RDLT models. 
By combining the strategy on establishing maximal activity 
structures in RDLTs, we can then progress to establishing 
concepts and techniques to separate an input RDLT into 
fragments without loss of local and global information of 
systems as represented by their RDLT models. Such separation 
can be helpful whenever we want to study in isolation some 
substructures of a system, relate them against each other, and/or 
build more efficient mechanisms to study, observe, and simulate 
system behaviors in a parallel fashion. 
 
2. Methodology for Establishing Separable RDLTs 
 
In this section, we formalize the concepts and techniques 
relating to separability of RDLTs with a focus on maximal 
activities and structures that support their execution. We begin 
by looking at how individual maximal activities in activity 
groups and sharing of components between and among them 
influence the separability of an RDLT model, as well as their 
activity completion or impedance thereof, possibly incurred 
through these shared components. Subsequently, we establish 
the structural requirements and introduce algorithms that build 
and/or prove profiles of separable RDLTs with the help of the 
concept of maximal activity structures, composite activities, and 
looped RDLTs, among others. Thereafter, we prove 
relationships between separable and impedance-free RDLTs. 
 
Definition 3. (Maximal Activity) 
 
Let 𝑆 = {𝑆(1), 𝑆(2),… , 𝑆(𝑘)},  𝑘 ∈ ℕ, be an activity for the 

input-output pair [𝑠, 𝑓] of 𝑉 in 𝑅. 
 
Let 𝐴𝑐𝑡𝐺𝑟234(𝑆) be a maximal activity group of 𝑆 for [𝑠, 𝑓] in 
𝑅. 
 
The activity 𝑆234 ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆) , 𝑆234 =
{𝑆234(1), 𝑆234(2),… , 𝑆234(𝑘234)} , 𝑘234 ∈  ℕ, is called a 
maximal activity for [𝑠, 𝑓] in 𝑅 if ∀𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), where 𝑆′ =
{𝑆′(1), 𝑆′(2), …, 𝑆′(𝑘′)}, 𝑘′ ∈ ℕ, ⋃#.!

/"'(𝑆234(𝑖) ⊇ ⋃0.!/1 𝑆′(𝑗). 
 
If we analyze 𝑆234 of 𝐴𝑐𝑡𝐺𝑟(𝑆), it would be an activity profile 
that is composed of the arcs in the minimal activity 𝑆2#" ∈
𝐴𝑐𝑡𝐺𝑟(𝑆), along with all the looping arcs (𝑥, 𝑦) ∈ 𝐸 where 𝑥 
and 𝑦 are vertices found in 𝑆2#". 
 
From the RDLT 𝑅  in Figure 1, we have three(3) maximal 
activities 𝑆234! , 𝑆234( , and 𝑆234'  for its input-output pair [𝑥!, 𝑥&], 
as follows: 

1. 𝑆234!  that is composed of 𝑆234! (1) = {(𝑥!, 𝑥+)} , 
𝑆234! (2) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆234! (3) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆234! (4) = {(𝑥*, 𝑥+)} , 
𝑆234! (5) = {(𝑥+, 𝑥,),  (𝑥+, 𝑥-)} , 𝑆234! (6) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆234! (7) = {(𝑥*, 𝑥+)} , 
𝑆234! (8) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆234! (9) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)}, 𝑆234! (10) = {(𝑥*, 𝑥&)}; 

 
2.  𝑆234(  that is composed of 𝑆234( (1) = {(𝑥!, 𝑥')} , 

𝑆234( (2) = {(𝑥', 𝑥()} , 𝑆234( (3) = {(𝑥(, 𝑥))} , 
𝑆234( (4) = {(𝑥), 𝑥&)}; 

 
3. 𝑆234'  that is composed of 𝑆234' (1) =

{(𝑥!, 𝑥')} , 𝑆234' (2) = {(𝑥', 𝑥))} , 𝑆234' (3) =
{(𝑥), 𝑥&)}; 

 
Remark 1: In view of a weakly-extended RDLT, since our 
maximal activities share the arcs leading from(to) the 
dummy source(sink), it is easy to see that a good L-value of 
these arcs is at least the number of maximal activities in this 
RDLT.  

 
2.1.  Composite Activities and Activity Impedance 
 
As a preliminary step to establishing profiles and techniques that 
help separate substructures of an input RDLT 𝑅 based on its 
(maximal activities, we first introduce the concept of composite 
activities and impeding activities in 𝑅 as shown below. Then, we 
look at the implications of shared components among these 
activities. 
 
Definition 4. (Looped RDLT)   
 
Given an RDLT 𝑅 = (𝑉, 𝐸, 𝑇,𝑀) with one source 𝑠 and sink 
vertex 𝑓. 
 
A looped RDLT 𝑅899: = f𝑉899:, 𝐸899:, 𝑇899:, 𝑀899:g of 𝑅 is an 
RDLT derived from 𝑅 where: 
 

1.  𝑉899:  and 𝐸899:  are sets of vertices and arcs 
corresponding to 𝑉′ and 𝐸′, respectively, that inherit 
the same values of the vertex and arc attributes of 𝑅. 
Additionally, 𝑉″ contains a dummy source controller 
𝑖  and dummy sink controller 𝑜  such that 
(𝑖, 𝑠′), (𝑓′, 𝑜) ∈ 𝐸899:  where 𝑠′(𝑓′)  correspond to 
𝑠(𝑓) of 𝑅, with 𝐶(𝑖, 𝑠′) = 𝐶(𝑓′, 𝑜) = 𝜀, L(i, s'), L(f', 
o) ∈ ℕ, 

  
 and 
  

2. (𝑓′, 𝑠′) ∈ 𝐸899: , with 𝐶(𝑓′, 𝑠′) = 𝜀 , and L(f',s') ∈ ℕ.
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Figure 4: The looped RDLT 𝑹𝒍𝒐𝒐𝒑 of the input 𝑹 in Figure 1. 

Definition 5. (Composite Activity 𝑺′)   

Let 𝑹 be an RDLT with its looped RDLT 𝑹𝒍𝒐𝒐𝒑 with 𝒊 and 𝒐 as 
its dummy source and sink controllers (see Definition 4). 

An activity 𝑺1 of 𝑹𝒍𝒐𝒐𝒑 is called a composite activity in 𝑹𝒍𝒐𝒐𝒑 
for a set of activities 𝑨 = {𝑺𝟏, 𝑺𝟐, … , 𝑺𝒏}  in 𝑹 , n ∈  ℕ, 𝑺𝒒 =
{𝑺𝒒(𝟏), 𝑺𝒒(𝟐),…,  𝑺𝒒f𝒌𝒒g} , 𝒌𝒒 ∈  ℕ, such that 𝑺1  is the 
concatenation of the activities in 𝑨 , denoted as 𝑺1 = 𝑺𝟏⊕
𝑺𝟐⊕…⊕𝑺𝒏 , where 𝑺1 = {𝑺1(𝟏), 𝑺1(𝟐),… , 𝑺1(𝒌′)} , k' 	∈  ℕ, 
with 

1. 𝑆1(1) = {(𝑖, 𝑠1)}, 
 

2. Let β	 = 	∑ f𝑘B + 1g"
B.! 		 and Ω = {	∑ f𝑘B +2

B.!
1g	|	1 ≤ 𝑚 ≤ 	𝑛	}. 
For each 𝑡CB,:E ∈ {1,2,… , β}\Ω  where 1 ≤ 𝑞 ≤ 	𝑛 
and 1 ≤ 𝑝 ≤	𝑘B, set 
𝑆′f1 + 𝑡CB,:Eg = {(𝑥1, 𝑦1) ∈ 𝐸899:|(𝑥1, 𝑦1)

∈ 𝐸899: corresponds to (𝑥, 𝑦) ∈ 𝐸, 
 and (𝑥, 𝑦) ∈ 𝑆B(𝑝)}, 

 
3. For each  𝑡CB,:E ∈ 	Ω where 1 ≤ 𝑞 ≤ 	𝑛 and 1 ≤ 𝑝 ≤

	𝑘B, set 

𝑆1F!GH6,-,/0GBIJ = {(𝑓1, 𝑠1)} 
 

4. 𝑆1(𝑘1) = {(𝑓1, 𝑜)}, where 𝑘1 = 2 +∑ f𝑘B + 1g"
B.!  

 
In essence, the activity 𝑆1 resulting from the concatenation of 
activities in 𝐴  simulates the execution of 𝑆!  first in 𝑅899: , 
initiating it via 𝑖  at first, and then from 𝑠1  to 𝑓1  (via the 
components of 𝑆!). Thereafter, this activity goes back to 𝑠1 from 
𝑓1, and then simulates 𝑆( from there in 𝑅899:, and so on. After 
iterating through these simulations until the last activity 𝑆", the 
activity 𝑆1 completes in 𝑅899: by traversing (𝑓1, 𝑜) at time step 
𝑘1. 
 
Remark 2. The composite activity 𝑆1  for 𝐴  will facilitate the 
checking of the possibility that every activity 𝑆B ∈ 𝐴 completes 
in full, with respect to the arcs involved in 𝑆B . With this, 
𝐿(𝑓1, 𝑠1) should be at least |𝐴|, i.e. the number of activities in 𝐴 
which are tested for their completion relative to each other. 
 
In addition, whenever 𝑅 is a multi-source(multi-sink) RDLT, 
simply connect 𝑖 ∈ 𝑉899:f𝑓1 ∈ 𝑉899:g to every 𝑠1 ∈ 𝑉899:f𝑜 ∈
𝑉899:g where 𝑠1(𝑓1) corresponds to a source 𝑠 ∈ 𝑉 (sink 𝑓 ∈
𝑉) of 𝑅, where 𝐶(𝑖, 𝑠1) = 𝜀 and 𝐿(𝑖, 𝑠1) = 1 (𝐶(𝑓1, 𝑜) = 𝜀 and 
𝐿(𝑓1, 𝑜) = 1). Similarly, set every 𝐿(𝑓1, 𝑠1) as described above. 
Definition 6. (Non-impeding Activities)   
 
Let 𝑅 be an RDLT with its source and sink vertices 𝑠 and 𝑓, 
respectively, and 𝑅899: be its looped RDLT with 𝑖 and 𝑜 be its 
dummy source and sink vertices. 
 

Let 𝐴 be a set of activities in 𝑅 for the pair [𝑠, 𝑓]. 
 
We say that 𝐴 has no activities that impede each other in 𝑅 if 
there exists a composite activity 𝐶 in 𝑅899: for the activities in 
𝐴. 
 
Building a composite activity 𝑆′ from a set of activities of 𝑅 in 
Figure 1, say its maximal activities 𝑆234! , 𝑆234( , and 𝑆234' , we 
have 𝑆′ = {𝑆′(1), … , 𝑆′(21)}  where 𝑆′(1) = {(𝑖, 𝑥!)} , 𝑆′(2) =
{(𝑥!, 𝑥+)} , 𝑆′(3) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆′(4) =
{(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆′(5) = {(𝑥*, 𝑥+)} , 𝑆′(6) = {(𝑥+, 𝑥,), 
(𝑥+, 𝑥-)} , 𝑆′(7) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 𝑆′(8) = {(𝑥*, 𝑥+)} , 
𝑆′(9) = {(𝑥+, 𝑥,), (𝑥+, 𝑥-)} , 𝑆′(10) = {(𝑥,, 𝑥*), (𝑥-, 𝑥*)} , 
𝑆′(11) = {(𝑥*, 𝑥&)} , 𝑆′(12) = {(𝑥&, 𝑥!)} , 𝑆′(13) = {(𝑥!, 𝑥')} , 
𝑆′(14) = {(𝑥', 𝑥()}, 𝑆′(15) = {(𝑥(, 𝑥))}, 𝑆′(16) = {(𝑥), 𝑥&)}, 
𝑆′(17) = {(𝑥&, 𝑥!)} , 𝑆′(18) = {(𝑥!, 𝑥')} , 𝑆′(19) = {(𝑥', 𝑥))} , 
𝑆′(20) = {(𝑥), 𝑥&)} , 𝑆′(21) = {(𝑥&, 𝑜)} . Note that 𝑆′  can be 
completely simulated in 𝑅899:  from 𝑖  until it reaches its 
intended sink 𝑜. Thus, we say that 𝑆234! , 𝑆234( , and 𝑆234'  do not 
impede each other in 𝑅. 
 
Theorem 1. Given an activity 𝑆 and its maximal activity group 
𝐴𝑐𝑡𝐺𝑟(𝑆), let 𝑆234 be the maximal activity of this group. For 
every activity 𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), where 𝑆′ has components that are 
involved in a cycle, 𝑆′ and 𝑆234 impede each other. 
 
Proof. Suppose that 𝑆′ and 𝑆234 do not impede each other in 𝑅, 
where 𝑆′ has components that are involved in a cycle. That is, 
there exists a composite activity 𝑆K92 = 𝑆234⊕𝑆′  that is 
derivable from the looped RDLT 𝑅899: of 𝑅. Note that the set of 
components of 𝑆234 is a superset of the components of 𝑆′. Thus, 
we can select some (𝑥, 𝑦) of 𝑆234  and analyze its use inside 
𝑆K92. 
 
Suppose (𝑥, 𝑦) is involved in some cycle in 𝑆234. Using 𝑅899:, 
we shall simulate 𝑆K92 using 𝑆234 first. We simulate 𝑆234 and 
pass through (𝑥, 𝑦) by the number of times it is reused in 𝑆234. 
Since 𝑆234 is a maximal activity of 𝑅, this number is the actual 
reusability 𝑒𝑅𝑈(𝑥, 𝑦)  of (𝑥, 𝑦) . Upon the completion of the 
simulation of 𝑆234  in 𝑅899: , the activity proceeds with 
traversing (𝑓′, 𝑠′) of 𝑅899:. From there, we simulate 𝑆′ and pass 
through (𝑥, 𝑦) again using the number of times 𝑛 that 𝑆′ reuses 
(𝑥, 𝑦). However, since we have already exhausted the allowable 
number of times that (𝑥, 𝑦) is used through the simulation of 
𝑆234 on 𝑅899:LM, we can never pass through (𝑥, 𝑦) again when 
we try to simulate 𝑆′, regardless if (𝑥, 𝑦) is inside or outside of 
an RBS. Thus, the composite activity 𝑆K92 is not realizable in 
𝑅899:, ergo 𝑆234 and 𝑆 impede each other. With this, we arrive 
at a contradiction. 
 
� 
 
With Theorem 1, since the set of components of 𝑆234  is a 
superset of the components of 𝑆′ ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆), we can use 𝑆234 
to analyze activity flows in any such 𝑆′ within the group, or in 
general, analyze the structure and behavior of 𝑅  through the 
relationships of its set of maximal activities. Furthermore, we set 
our goal in this paper to analyze these relationships across 
different maximal groups for the purpose of giving system 
designers and analysts the concepts and techniques that would 
help them fragment an input RDLT into separable (and 
manageable) substructures without compromising and omitting 
its innate system information. With this, we establish 
impedance-free RDLTs in the context of their maximal activities 
as shown in Definition 7. 
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Definition 7. (Impedance-free RDLT) 
 
An input RDLT 𝑅 is called impedance-free if every pair of its 
maximal activities for its source and sink do not impede each 
other. 
 
The RDLT 𝑅 in Figure 1 is impedance-free since every pair of 
its maximal activities 𝑆234! , 𝑆234( , and 𝑆234'  do not impede each 
other. 
 
2.2. Techniques on RDLT Separation 
 
2.2.1. Extracting Maximal Activities 
To extract maximal activities from a given RDLT 𝑅  (with 1 
input and output vertices), we shall first generate its Level 1 and 
Level 2 expanded vertex simplification 𝑅! and 𝑅(, respectively. 
If 𝑅( has multiple source/sink vertices, update 𝑅( as its weakly-
extended RDLT so that it only has one dummy source and sink 
vertex with an OR-JOIN at the dummy sink. 
 
Then, we establish a contraction path 𝑃 from a source vertex 𝑠N# 
of 𝑅# to its sink vertex 𝑓N#. The set of vertices and edges that are 
involved in 𝑃 may not compose a minimal activity in 𝑅#. That is, 
this set can include looping arcs or can include a sub-path 𝑃′ 
from 𝑠N# to 𝑓N# where at least one of its vertex 𝑣 that is involved 
in a MIX-JOIN(Malinao 2017) or an OR-JOIN has (𝑢, 𝑦) and 
(𝑣, 𝑦) have duplicate 𝐶-values, i.e. 𝐶(𝑢, 𝑦) = 𝐶(𝑣, 𝑦). Note that 
for the latter case, 𝑦 can be used(reached) by any activity by 
satisfying 𝐶(𝑢, 𝑦) without the need to satisfy 𝐶(𝑣, 𝑦) (or vice 
versa). Hence, we shall prune out such duplications without 
compromising the required paths along the contraction path 𝑃 
from the source to the sink of 𝑅#. 
 
To execute the above-mentioned pruning, we shall assign a 
positive integer weight to each arc that is necessary to reach the 
sink from the source of 𝑅# along 𝑃. Initially, this weight per arc 
is set to 0. After initialization, we collect every merge point 𝑦 
along 𝑃. For every arc (𝑥, 𝑦) whose 𝐶-value is different from 
the other arcs (𝑢, 𝑦), we add 1 to each arc involved along the 
path 𝑄  from the source or another merge point along 𝑄 , 
whichever is nearer to 𝑦, to (𝑥, 𝑦). We do this too for one path 
𝑄′ whose component (𝑥, 𝑦) has a duplicated 𝐶-value relative to 
another arc (𝑣, 𝑦)  along 𝑃 . After this process, arcs that are 
duplicates of others with respect to their 𝐶-values, along with 
their ancestors which are unnecessary to reach the sink from the 
source of 𝑅#, i.e. with final weights of 0 as well, are removed 
from 𝑃. (Looping arcs are also removed from 𝑃 in this process 
of pruning.) The other arcs with a weight of at least 1 are deemed 
to be necessary and the minimum set to reach the sink from the 
source. 
 
For brevity, we call the substructure 𝑅2#"  of 𝑅#  as a Minimal 
Contraction Structure (MinCS) where 𝑅2#"  is induced by the 
arcs composing the (pruned) contraction path 𝑃 in 𝑅#. 
 
With respect to getting a minimal activity of the entire input 
RDLT 𝑅, we consolidate the components of 𝑅 that compose a 
pruned contraction path P from 𝑠 to 𝑓 of 𝑅!, and a set of pruned 
contraction paths in 𝑅( from a set of sources 𝐼N1 and set of sink 
vertices 𝑂N1 in 𝑅( such that every 𝑜N1 ∈ 𝑂N1 appears as part of 
the contraction path P of 𝑅!, and at least one 𝑖N1 ∈ 𝐼N1 has a path 
towards 𝑜 ∈ 𝑂N1. 
Algorithm 1 below shows the Modified Contraction Algorithm 
(MCA) that extracts a minimal contraction path 𝑃 in 𝑅#. 
 
Algorithm 1: The Modified Contraction Algorithm (MCA) 
 
Input: RDLT 𝑅 with one source 𝑠 and sink 𝑓 
 

Output: A minimal contraction path 𝑃 for the source and sink 
of 𝑅#, 𝑖 ∈ {1,2}. 
 
Steps: 
 

1 Get Level-𝑖 vertex simplification of 𝑅 by 
EVSA(Malinao and Juayong 2023a). 

2 Select 𝑖, 𝑖 ∈ {1,2} to build 𝑃 
3 If 𝑖 = 2 AND 𝑅( has more than 1 source/sink then 
4       Update 𝑅( as a weakly-

extended RDLT. //sets 𝑅( to 
have 1 dummy source/sink 
with an OR-JOIN at the sink 

 

5 Let 𝑠′ ∈ 𝑉# and 𝑓′ ∈ 𝑉# be the source and sink of 𝑅# 
6 Let 𝑥 = 𝑠′. //𝑥 shall act as the dummy node 

representing merged vertices in 𝑃 
7 Initialize 𝑃 = {𝑥}. 
8 From 𝑥 to 𝑓′ 
9       Select 𝑦 ∈ 𝑉# where (𝑥, 𝑦) ∈ 𝐸# 
10       Select 𝑦 ∈ 𝑉# where (𝑥, 𝑦) ∈ 𝐸# 
11       If ⋃

∀0
{𝐶(𝑥, 𝑦)0} ∪ {𝜀} ⊇ ⋃

∀(%,P)∈S#,%T4
{𝐶(𝑢, 𝑦)} 

12            Update 𝐶(𝑢, 𝑦) =
𝜀, ∀(𝑢, 𝑦) ∈ 𝐸# , 𝑢 ≠ 𝑥. 

 

13            Merge 𝑥 to 𝑦.  
14            Update 𝑃 = 𝑃 ∪ {𝑦}.  
15 Induce 𝑅2#" from 𝑅# using the vertices in 𝑃. 
16 //Prune duplicate paths within the contraction path 𝑃 
17 For each arc (𝑝, 𝑞) in 𝑅2#" 
18       Initialize 𝑤𝑒𝑖𝑔ℎ𝑡(𝑝, 𝑞) = 0. 
19 Let 𝑀𝑃 be the set of vertices in 𝑅2#" where each 

vertex is a merge point of a JOIN 
21 For each 𝑦 ∈ 𝑀𝑃 
22       //Add 1 to the weight of arcs in every(one) path 

that has a 
23       //distinct(duplicated) 𝐶-value at merge point 
24       Let 𝑄 = 𝑣!𝑣(…𝑣" be an elementary path from 

the source 𝑠″ of 𝑅2#" 
25        to 𝑦 where ∄(𝑢, 𝑦) in 𝑅2#" such that 

𝐶(𝑣"U!, 𝑣") ≠ 𝐶(𝑢, 𝑦). 
26       From 𝑗 = 𝑛 to 2 
27            Update 

𝑤𝑒𝑖𝑔ℎ𝑡f𝑣0U!, 𝑣0g =
𝑤𝑒𝑖𝑔ℎ𝑡f𝑣0U!, 𝑣0g + 1. 

 

28            If 𝑣0U! ∈ 𝑀𝑃 then break.  
29       Let 𝑄′ = 𝑢!𝑢(…𝑢2 be an elementary path from 

the source 𝑠″ of 𝑅2#" 
30        to 𝑦 where ∃(𝑣, 𝑦) in 𝑅2#" such that 

𝐶(𝑢2U!, 𝑢2) = 𝐶(𝑣, 𝑦), 𝑢2U! ≠ 𝑣. 
31       From 𝑗 = 𝑚 to 2 
32            Update 

𝑤𝑒𝑖𝑔ℎ𝑡f𝑢0U!, 𝑢0g =
𝑤𝑒𝑖𝑔ℎ𝑡f𝑢0U!, 𝑢0g + 1. 

 

33            If 𝑢0U! ∈ 𝑀𝑃 then break.  
34 Remove from 𝑅2#" any arc (𝑢, 𝑣) with 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣) = 0. 
35 Update 𝑃 to be the set of the remaining vertices of 

𝑅2#" 
36 Output 𝑃. 

 
Lemma 1. MCA produces a minimal contraction path 𝑃 whose 
MinCS 𝑅2#" composes a minimal activity 𝑆2#" in the expanded 
level-𝑖 vertex simplification 𝑅#, 𝑖 ∈ {1,2},	of 𝑅. 
Proof. We prove Lemma 1 by contradiction. That is, let 𝑆 be an 
activity in 𝑅#  where the components of 𝑆 =
{𝑆(1), 𝑆(2),… , 𝑆(𝑘)}  are derived from using MinCS 𝑅#′ 
obtained through such contraction path 𝑃 of 𝑅# . Furthermore, 

suppose ⋃
/

0.!
𝑆(𝑗) ⊂ ⋃

/1

01.!
𝑆2#"(𝑗′). With this, there exists an arc 
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(𝑥, 𝑦) that was traversed in 𝑆2#" but not in 𝑆. 
 

1. Case 1: If 𝐶(𝑥, 𝑦) ∈ 𝛴. This case implies that there is 
either an MIX- or AND-JOIN that merges at 𝑦. Note 
that for a MIX-JOIN, any (𝑢, 𝑦) such that 𝐶(𝑢, 𝑦) =
𝐶(𝑣, 𝑦)  is pruned out from 𝑅2#"  at steps 16-35, 
𝐶(𝑥, 𝑦)  already represents every such (𝑢, 𝑦)  in the 
evaluation of the reachability of 𝑦 in 𝑅#. Moreover, if 
𝑃 contains the other component of this MIX-JOIN, i.e. 
(𝑣, 𝑦)  where 𝐶(𝑣, 𝑦) = 𝜀 , (𝑣, 𝑦)  can never be 
contracted towards 𝑦 without the required condition 
𝐶(𝑥, 𝑦). Thus, 𝑃  without (𝑥, 𝑦) is not a contraction 
path for 𝑅# , thus 𝑆  cannot exist on 𝑅2#" , where 

⋃
/

0.!
𝑆(𝑗) ⊂ ⋃

/1

01.!
𝑆2#"(𝑗′). 

 
  Meanwhile, if 𝑦 is a merge point for an AND-JOIN 

involving (𝑥, 𝑦) and some (𝑢, 𝑦) in 𝑅#, i.e. 𝐶(𝑢, 𝑦) ∈
𝛴  and 𝐶(𝑥, 𝑦) ≠ 𝐶(𝑢, 𝑦), 𝑦 can never be contracted 
within 𝑃  if (𝑥, 𝑦)  is missing. Similarly, 𝑃  without 
(𝑥, 𝑦) is not a contraction path for 𝑅# , ergo, such 𝑆 
cannot exist on 𝑅2#". 

   
  Thus, in both scenarios, we arrive at a contradiction. 

 
2. Case 2: If 𝐶(𝑥, 𝑦) = 𝜀. This case implies that there is 

an OR-JOIN, or simply a sequential process, that 
merges at 𝑦. By the pruning step of MCA, all other 
(𝑢, 𝑦) with the same 𝐶-value, i.e. 𝜀, is removed from 
𝑅2#". This step would then imply that there is exactly 
one path from 𝑥 to 𝑦, as well as from the source of 𝑅# 
to 𝑦, and then to its sink in 𝑅2#". In essence, the arc 
(𝑥, 𝑦)  acts as a bridge in 𝑅2#"  such that 𝑅2#" 
becomes a disconnected graph with the absence of 
(𝑥, 𝑦) . Thus, 𝑃  is not a contraction path from its 
source towards its sink without (𝑥, 𝑦). With this, thus 
we proved that 𝑆  cannot exist on 𝑅2#" , where 

⋃
/

0.!
𝑆(𝑗) ⊂ ⋃

/1

01.!
𝑆2#"(𝑗′) – a contradiction. 

 
� 
 
Lemma 2. MCA builds a minimal contraction path 𝑃, and its 
corresponding MinCS 𝑅2#"  in the expanded level- 𝑖  vertex 
simplification 𝑅#, 𝑖 ∈ {1,2},	of the RDLT 𝑅, using 𝑂(|𝑉|') and 
𝑂(|𝑉|() time and space complexity. 
 
Proof. For Line 1, EVSA builds 𝑅# from 𝑅 with 𝑂(|𝑉|() in time 
and space complexity as per (Malinao and Juayong 2023a). 
Extending 𝑅# at Line 4 takes constant time and space. To build 
a contraction path 𝑃 from the source 𝑠 to 𝑓 of 𝑅# from Lines 8-
14, it can take the diameter d ∈ ℕ of 𝑅#  to build 𝑃, and then 
multiplied with 𝑂(|𝑉|() , or 𝑂(𝑑|𝑉|()  in time and space 
complexity. This diameter is computed solely using the 
elementary paths of 𝑅# , thus 𝑑 ∈ 𝑂(|𝑉|) . This complexity 
accounts for the worst-case wherein each contraction may 
require the inclusion of all paths from a split point towards its 
corresponding merge point 𝑦, i.e. merging via an AND- or MIX-
JOIN. For the latter type of JOIN, contraction may first go 
through all the paths ending with 𝜀 at the merge point before 
going through a 𝛴-condition arc (𝑣, 𝑦) to resolve this JOIN. For 
the pruning step of MCA, i.e. from Lines 16 and onwards, we 
have the following steps and their corresponding time and space 
complexity: 
 

1. listing the merge points in 𝑅2#"  in 𝑀𝑃  – this takes 
𝑂(|𝑉|(). 
 

2. Pruning 𝑅2#" for each elementary path 𝑄(𝑄′), adding 1 

to each necessary arc of 𝑅2#"  – This step takes 
𝑂(𝑑|𝑉|() or 𝑂(|𝑉|'). This accounts that every merge 
point can have 𝑂(|𝑉|) connections. Since we do this for 
each merge point along the diameter 𝑑  of 𝑅# , we 
therefore obtain 𝑂(|𝑉|') and 𝑂(|𝑉|() in time and space 
complexity, respectively. 

 
� 
 
Definition 8. (Maximal Activity Structure) 
A Maximal Activity Structure(MAS) 𝑅VWX =
(𝑉VWX, 𝐸VWX, 𝑇VWX) of 𝑅# = (𝑉# , 𝐸# , 𝑇# , 𝑀#) for its source 𝑠N# and 
sink vertex 𝑜N# is a projection of 𝑅# induced by the components 
of its MinCS 𝑅2#" for and every looping arc (𝑥, 𝑦) of 𝑅# where 
𝑥  and 𝑦  are vertices found in 𝑅2#" , where for every edge 
(𝑢′, 𝑣′) ∈ 𝐸VWX corresponding to (𝑢, 𝑣) ∈ 𝐸# of 𝑅#, 
 

𝐿(𝑢′, 𝑣′) = �
1, if (𝑢′, 𝑣′) appears in 𝑅2#" and 

(𝑢, 𝑣) is not a part of a cycle in 𝑅# ,
𝐿(𝑢, 𝑣),  otherwise.

 

 
Figure 5 shows the set of maximal activity structures in items (a) 
and (b) of 𝑅! and 𝑅(, respectively, of the RDLT 𝑅 in Figure 1. 
For item (a), note that there are two abstract arcs connecting 𝑥' 
and 𝑥) in 𝑅!. Thus, due to the pruning step of MCA to extract 
the MinCS of 𝑅!, it was able to find two MinCS substructures 
along these abstract arcs due to their duplicate 𝐶-values, i.e. 
𝐶(𝑥', 𝑥))! = 𝐶(𝑥', 𝑥))( = 𝜀. Thus, these substructures in item 
(a) eventually result to 𝑅VWX!  and 𝑅VWX(  as two of the three MAS 
of 𝑅! . Furthermore, none of the components of these 
substructures are involved in a cycle, thus, their 𝐿-values are set 
to 1 by Definition 8. Meanwhile, 𝑅VWX'  has each of the 
components of the split-join substructure having its 𝐿-value set 
to its expanded reusability, i.e. 2, as per Definition 8 as well. 
 

 
Figure 5: The Maximal Activity Structures (MASs) of 𝑹𝟏 and 𝑹𝟐 of 𝑹 
in Figure 1. 

Theorem 2. For every MAS 𝑅VWX  of 𝑅# , there exists a 
corresponding maximal activity 𝑆234 =
{𝑆234(1), 𝑆234(2),… , 𝑆234(𝑘)} of 𝑅#  whose components use 
𝑅VWX. 
 
Proof. For this, we prove that there exists an activity 𝑆 =
{𝑆(1), 𝑆(2),… , 𝑆(𝑘)}  derivable from 𝑅VWX  where ∀𝑗 , 𝑆(𝑗) =
𝑆234(𝑗) (or 𝑆 = 𝑆234). 
 
Let 𝑅2#"  be the MinCS that is used to derive 𝑅VWX  as per 
Definition 8. Furthermore, let 𝑆2#" =
{𝑆2#"(1), 𝑆2#"(2),… , 𝑆2#"(𝑘′)} be a minimal activity in 𝑅#(as 
proved in Lemma 1) that is derivable from 𝑅2#". 
 
We construct 𝑆 via the components in 𝑆2#" such that we adopt 
the precedence of every pair 𝑆2#"(𝑡) and 𝑆2#"(𝑡 + 𝑗), 1 ≤ 𝑡 ≤
𝑘′, onto 𝑆, along with the incorporation of all loops involved 
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between two pairs of vertices that are found in 𝑅2#"(and 𝑆2#"). 
That is, we simulate the activity extraction algorithm on 𝑅VWX, 
building 𝑆 , by tracing the components of 𝑆2#" , momentarily 
suspending this tracing if the algorithm sees a looping arc (𝑥, 𝑦) 
along the previously traced components. The algorithm shall 
iterate on these components as long as 𝐿(𝑥, 𝑦) of 𝑅VWX allows it 
to. Once this looping is exhausted, then, the algorithm continues 
to build using the subsequent components of 𝑆2#" until the next 
looping arc is encountered. These processes would iterate as 
stated until the last components of 𝑆2#" are simulated in 𝑅VWX 
and adopted in 𝑆. 
 
Since the 𝐿-value of each arc (𝑥, 𝑦), where (𝑥, 𝑦) is involved in 
a loop in 𝑅VWX, is equal to the 𝐿-value of its corresponding arc 
(𝑥′, 𝑦′) in 𝑅#  (by Definition 8), then the maximum number of 
times that the algorithm iterates on 𝑅VWX to build 𝑆 is the same 
as the maximum number of times that (𝑥′, 𝑦′) is used in 𝑆234. 
Furthermore, since 𝑆234  uses the arcs involved in 𝑅VWX , the 
utility and progression of use of each arc in 𝑆234 is consistent 
with that of 𝑆. Thus, we proved that 𝑆 = 𝑆234.  
 
� 
 
2.2.2. Separable RDLT 
 
From here on, we would start dealing with how to separate 
components or substructures of the RDLT based on their 
aggregation to form an activity in 𝑅. We shall separate an input 
RDLT based on its maximal activity structures where every such 
structure is usable to generate an activity group of a minimal 
activity in 𝑅. Identifying and separating such structures in an 
input RDLT can give us an insight into how shared components 
affect the parallelizability of activities if and when such 
activities need to be executed at the same time. 
 
Definition 9. (Separable RDLT)  
 
Given 𝑅# = (𝑉# , 𝐸# , 𝑇#) and a k ∈ ℕ, 𝑅#  is 𝑘-separable if there 
exists exactly 𝑘 number of MAS 𝑅VWX

0 = f𝑉VWX
0 , 𝐸VWX

0 , 𝑇VWX
0 g, 

𝑗 = 1,2,… , 𝑘, where for every (𝑢, 𝑣) ∈ 𝐸#, and its corresponding 
arc f𝑢0 , 𝑣0g ∈ 𝐸VWX

0 , 
 

𝐿(𝑢, 𝑣) ≥�𝐿
/

0.!

f𝑢0 , 𝑣0g ≥ 𝑒𝑅𝑈(𝑢, 𝑣). 

 
We call the entire RDLT 𝑅  as a separable RDLT if its 
expanded vertex simplifications 𝑅# is 𝑘#-separable, 𝑘# ∈ ℕ, 𝑖	 ∈
{1,2} , and every (𝑥, 𝑦) ∈ 𝐸#  has a corresponding f𝑥0 , 𝑦0g ∈
𝐸VWX
0  of some 𝑅VWX

0 . 
 
Definition 9 means that the consolidated set of MAS of each 𝑅# 
would have each component (𝑢, 𝑣) ∈ 𝐸# to have its (derived) 𝐿-
value, in particular its expanded reusability 𝑒𝑅𝑈(𝑢, 𝑣) , 
configured in a way that parts of it are distributed to each 𝐿-
value of its corresponding component f𝑢0 , 𝑣0g ∈ 𝐸VWX  where 
the sum of the latter does not exceed 𝐿(𝑢, 𝑣) of 𝑅#, regardless of 
the fact that (𝑢, 𝑣) is a shared component by these activities. 
 
Finally, Definition 9 also provides that every arc in a 𝑅#  is 
involved in at least one of its set of MAS so the entire RDLT 𝑅 
is separable. 
 
Referencing the expanded vertex simplification 𝑅! in Figure 3 
and its respective MAS in Figure 5, item (a), 𝑅VWX!  to 𝑅VWX' , 𝑅! 
is separable by Definition 9. For example, (𝑥!, 𝑥') of 𝑅!  has 
𝐿(𝑥!, 𝑥') = 5 , where its set of corresponding arcs in 𝑅VWX! , 
𝑅VWX( , and 𝑅VWX'  (also labelled with (𝑥!, 𝑥') ) have their 𝐿 -

values totalling to 2(< 5), i.e. 𝐿(𝑥!, 𝑥') of 𝑅VWX!  + 𝐿(𝑥!, 𝑥') of 
𝑅VWX(  = 1 + 1 = 2. Note that (𝑥!, 𝑥') is not part of MAS 𝑅VWX' . 
Meanwhile, for the abstract arc (𝑥', 𝑥)) of 𝑅! in Figure 3 that 
corresponds to the path (𝑥', 𝑥(), (𝑥(, 𝑥)), its 𝐿-value in 𝑅! is 1; 
while its corresponding arcs (𝑥', 𝑥))! in 𝑅VWX! , 𝑅VWX( , and 𝑅VWX'  
have their sum of 𝐿 -values equal to 1 (< 2). In both arcs, 
𝑒𝑅𝑈(𝑥!, 𝑥') = 1 and 𝑒𝑅𝑈(𝑥', 𝑥))!  are equal to 1, thus, (5 ≥
2 ≥ 1)  and (2 ≥ 1 ≥ 1)  (as per Definition 9, respectively. If 
we look at the relationship of 𝑅# and its MAS, substructures that 
involve at least one loop in 𝑅# must not be part of more than 1 
MAS for 𝑅# , otherwise, 𝑅#  is not separable. That is, by 
Definition 8, an arc (𝑥, 𝑦) of 𝑅#  would have its corresponding 
arcs in each of its MASs set to its 𝐿(𝑥, 𝑦), hence, for 𝑛 MAS of 
𝑅# , where 𝑛 > 1, we have 𝐿(𝑥, 𝑦) ≱ 𝑛 ∗ 𝐿(𝑥, 𝑦) ≱ 𝑒𝑅𝑈(𝑥, 𝑦) 
in Definition 9. 
 
Additionally, 𝑅( is also separable based on the 𝐿-values of its 
components with relation to 𝑅VWX!  and 𝑅VWX(  in item (b) of 
Figure 5. 
 
Theorem 3 poses the relationship of separable and impedance-
free RDLTs. 
 
Theorem 3. 𝑅# is separable if and only if 𝑅 is impedance-free, 
i.e. for every pair of its MAS 𝑅VWX! =
(𝑉VWX! , 𝐸VWX! , 𝑇VWX! , 𝑀VWX

! )  and 𝑅VWX( = (𝑉VWX( , 
𝐸VWX( , 𝑇VWX( , 𝑀VWX

( )  that induce their corresponding maximal 
activities 𝑆234!  and 𝑆234( , respectively, 𝑆234!  and 𝑆234(  do not 
impede each other. 
 
Proof. We first prove that if 𝑅#  is separable, then every such 
𝑆234!  and 𝑆234(  do not impede each other. 
 
Using Definition 9, we know that every such pair of MAS 𝑅VWX!  
and 𝑅VWX(  of 𝑅# follows the minimal contraction paths 𝑃 and 𝑃′, 
respectively, where either of the following cases holds: 
 

• Case 1: if 𝑃  and 𝑃′ intersect at some 𝑦 ∈ 𝐸# , but 
with no common arc between them. 

 
Suppose that 𝑦 forms a JOIN in 𝑅#, i.e. (𝑢, 𝑦), (𝑣, 𝑦), 
where at least one of these components uses at least 
one arc (𝑢!, 𝑦!) ∈ 𝐸VWX!  in 𝑃, while at least one other 
arc (𝑣(, 𝑦() ∈ 𝐸VWX( , where these components 
correspond to the JOIN (𝑢, 𝑦), (𝑣, 𝑦) ∈ 𝐸# , 
respectively. Since 𝑃 and 𝑃′ are minimal contraction 
paths from the source to the sink vertices of 𝑅# , we 
know that 𝐶(𝑢!, 𝑦!) = 𝐶(𝑣(, 𝑦(). With these, if we 
simulate the maximal activity 𝑆234!  derivable from 
𝑅VWX!  through 𝑃, (𝑢, 𝑦) will not be impeded by (𝑣, 𝑦) 
so that 𝑦 is reachable by the algorithm in terms of their 
𝐶-values. Thus, the simulation of 𝑆234!  can go on for 
every such JOIN that goes through/intersects with 𝑃 
until the last reachability profile of 𝑆234! . The same is 
true if we simulate the maximal activity 𝑆234(  
derivable from 𝑅VWX(  through 𝑃′. Thus, we would be 
able to prove this case by building the looped RDLT 
𝑅899: of 𝑅# as per Definition 4. Thereafter, we build a 
composite activity 𝑆″  from using 𝑆234!  and 𝑆234(  of 
these MAS, and therefore show that 𝑆234!  and 𝑆234(  
do not impede each other. 

 
• Case 2: if 𝑃 and 𝑃′ share a common arc (𝑥, 𝑦) in 𝐸#. 

 
To prove this case, we look at the execution of the 
activities 𝑆234!  and 𝑆234(  that are derivable from MAS 
𝑅VWX!  and 𝑅VWX(  that use 𝑃  and 𝑃′, respectively. Let 
f𝑥0 , 𝑦0g ∈ 𝐸VWX

0  be the arc in 𝑅VWX
0  that corresponds 
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to (𝑥, 𝑦) ∈ 𝐸# , 𝑗 = 1,2 . With this, we have the 
following sub-cases to prove: 
 
– if (𝑥, 𝑦) is not part of at least one loop in 𝑅#. 

 
For this case, we start by building the looped 
RDLT 𝑅899:  of 𝑅#  as per Definition 4 using 
𝑅VWX!  and 𝑅VWX(  as in Case 1 above. 
 

  Similarly, we construct a composite activity 𝑆″ 
using 𝑆234!  and 𝑆234(  for 𝑅899: . Suppose we 
simulate 𝑆234!  in 𝑅899: from its source until we 
use all its components. Since (𝑥!, 𝑦!) is not part 
of a loop, its 𝐿-value is 1 in 𝑅VWX! . Note that 
𝑆234!  uses (𝑥!, 𝑦!)  exactly once. Then, the 
simulation of 𝑆″  moves into simulating 𝑆234(  
through the corresponding components in 𝑅899: 
until the sink is reached. In the same manner, 
𝐿(𝑥(, 𝑦() = 1  in 𝑅VWX( , as well as 𝑆″  uses its 
corresponding arc exactly once. Since 𝑅#  is 
separable, we know that 𝐿(𝑥, 𝑦) ≥ 2. Moreover, 
𝐿(𝑥!, 𝑦!) + 𝐿(𝑥(, 𝑦() ≥ 𝑒𝑅𝑈(𝑥, 𝑦) . Thus, we 
would be able to simulate the entire composite 
activity 𝑆″ since 𝐿(𝑥, 𝑦) allows it so. 

 
– if (𝑥, 𝑦) is part of at least one loop in 𝑅#. 
 

For this case, we show that 𝑅#  cannot be 
separable if there exists a shared (𝑥, 𝑦) between 
𝑅VWX!  and 𝑅VWX(  where (𝑥, 𝑦) is part of at least 
one loop in 𝑅#. 
 
We prove this by contradiction. That is, 𝑅#  is 
separable if (𝑥, 𝑦)  is a shared component of 
𝑆234!  and 𝑆234(  derivable from 𝑅VWX!  and 𝑅VWX( , 
respectively, where (𝑥, 𝑦) is part of at least one 
loop in 𝑅#. 
 
Assume that 𝑅#  is separable. Furthermore, let 
(𝑥, 𝑦) be a (P)CA of 𝑅#. 
 
Let (𝑥!, 𝑦!) ∈ 𝐸VWX!  and (𝑥(, 𝑦() ∈ 𝐸VWX!  both 
correspond to the shared (P)CA (𝑥, 𝑦) ∈ 𝐸# . 
Since 𝑅#  is separable, we know that 𝐿(𝑥, 𝑦) ≥
𝐿(𝑥!, 𝑦!) + 𝐿(𝑥(, 𝑦() (Definition 9). However, 
using Definition 8, we know that 𝐿(𝑥!, 𝑦!) =
𝐿(𝑥(, 𝑦() = 𝐿(𝑥, 𝑦) . Note that by the 
construction of EVSA of 𝑅# , 𝐿(𝑥, 𝑦) =
𝑒𝑅𝑈(𝑥, 𝑦) . With this, we see that 𝐿(𝑥, 𝑦) ≥
2𝐿(𝑥, 𝑦) which is a contradiction, thus our claim 
that 𝑅# is separable is not true. 
 
In a similar light, we will also prove that if 𝑆234!  
and 𝑆234(  share (𝑥, 𝑦), where (𝑥, 𝑦) is part of at 
least one loop, there is no composite activity 𝑆″ 
that can be constructed from these activities, i.e. 
𝑆234!  and 𝑆234(  impede each other. We prove 
this again by contradiction. That is, suppose that 
a composite activity 𝑆″  exists from 𝑆234!  and 
𝑆234(  that shares (𝑥, 𝑦)  of 𝑅#  where (𝑥, 𝑦)  is 
part of at least one loop. 
 
Let 𝑐!  by the cycle that involves (𝑥!, 𝑦!)  in 
𝑅VWX! . Similarly, let 𝑐( by the cycle that involves 
(𝑥(, 𝑦()  in 𝑅VWX( . Since 𝑆234!  is a maximal 
activity derivable from 𝑅VWX! , it would therefore 
use the maximum number of times that (𝑥!, 𝑦!) 
is usable through 𝑐!, i.e. 𝐿(𝑥!, 𝑦!) = 𝑒𝑅𝑈(𝑥, 𝑦). 

By this time, we have already exhausted the 
usability of (𝑥, 𝑦)  such that 𝑆234(  cannot be 
simulated in 𝑅899:  when we enter 𝑐(  to 
use/reuse (𝑥(, 𝑦(). Thus, 𝑆″ is not realizable as 
a composite activity for the source and sink of 
𝑅899:, i.e. a contradiction to our claim. 

 
Next, we prove that if for every pair of MAS 𝑅VWX!  and 𝑅VWX(  of 
𝑅# , with their maximal activities 𝑆234!  and 𝑆234( , 𝑆234!  and 
𝑆234(  do not impede each other, then 𝑅# is separable. 
 
To prove this case, we look at every common arc (𝑥, 𝑦) ∈ 𝐸# 
that has corresponding arcs f𝑥0 , 𝑦0g ∈ 𝐸VWX

0 , 𝑗 = 1,2, that is 
common between 𝑅VWX!  and 𝑅VWX( . Since each 𝑅VWX

0  is a 
maximal activity structure, we know that 𝐿f𝑥0 , 𝑦0g is either 1 or 
𝐿(𝑥, 𝑦). In either case, we know that 𝑆234!  and 𝑆234(  do not 
impede each other. In other words, if we now include all of the 
maximal activities 𝑅VWX

0  of 𝑅# , we can build a composite 
activity 𝐶 = 𝑅VWX! ⊕𝑅VWX( ⊕…⊕𝑅VWX

/# , ki ∈ ℕ, that can be 
simulated in the looped RDLT of 𝑅899: of 𝑅#. If we look at the 
number of times n ∈ ℕ that f𝑥0 , 𝑦0g is used in 𝐶, we see that 𝑛 
is either (a) exactly the number of maximal activities that use 
(𝑥, 𝑦)  (i.e. for the first case – (𝐿f𝑥0 , 𝑦0g = 1 ), and with 
𝑒𝑅𝑈(𝑥, 𝑦) = 0, or (b) equal to 𝑒𝑅𝑈(𝑥, 𝑦) since there is exactly 
one MAS 𝑅VWX

0 , that use (𝑥, 𝑦)  (i.e. for the second case – 
𝐿f𝑥0 , 𝑦0g = 𝑒𝑅𝑈(𝑥, 𝑦)) , where 1 ≤ 𝑗 ≤ 𝑘# . In both cases, 
𝐿(𝑥, 𝑦) ≥ 𝑛 ≥ 𝑒𝑅𝑈(𝑥, 𝑦). With this, we have proved that 𝑅# is 
separable. 
 
� 

 
Corollary 1. Given two activities 𝑆 and 𝑆′ of 𝑅#, let 𝐴𝑐𝑡𝐺𝑟(𝑆) 
and 𝐴𝑐𝑡𝐺𝑟(𝑆′)  be their maximal activity groups where 
𝐴𝑐𝑡𝐺𝑟(𝑆) ≠ 𝐴𝑐𝑡𝐺𝑟(𝑆′). 
 
For every pair of activities 𝐴 ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆) and 𝐵 ∈ 𝐴𝑐𝑡𝐺𝑟(𝑆′) in 
𝑅, 𝑅#  is separable if and only if 𝐴 and 𝐵 do not impede each 
other. 
 
Proof. Follows from Theorem 3. � 
 
Theorem 4. Given a set of MAS of size 𝑘#  for an expanded 
level- 𝑖  vertex-simplification 𝑅#  of an RDLT 𝑅 , 𝑖 ∈ {1,2} , it 
takes 𝑂(|𝐸|') time and space complexity to determine if 𝑅 is 
separable. 
 
Proof. We initially express the problem of determining a 
distribution of the L-value of each arc in 𝑅#  from among its 
given set of MAS. This can be expressed as a system of linear 
equations, as shown below. Thereafter, we solve this system 
such that we are able to realize if the input RDLT 𝑅 is indeed 
separable. 
 

⎝

⎜⎜
⎛
𝐿%𝑒!,!' 𝐿%𝑒!,#' … 𝐿%𝑒!,$!'
𝐿%𝑒#,!' 𝐿%𝑒#,#' … 𝐿%𝑒#,$!'
⋮ ⋮ … ⋮

𝐿%𝑒|&!|,!' 𝐿%𝑒|&!|,#' … 𝐿%𝑒|&!|,$!'
⎠

⎟⎟
⎞

⎝

⎜
⎛

𝐼!(𝑒')
𝐼#(𝑒')
⋮

𝐼$!%𝑒|&!|'
⎠

⎟
⎞
≤

⎝

⎜
⎛

𝐿(𝑒!)
𝐿(𝑒#)
⋮

𝐿%𝑒|&!|'
⎠

⎟
⎞
, 

 
where 𝐿f𝑒Y,Zg ∈ {0,1, 𝐿(𝑒Y)} , 1	 ≤ 𝑟	 ≤ |𝐸#| , 1	 ≤ 𝑠	 ≤ 𝑘# , 
𝐿(𝑒Y) ≥ 1, and 
 

𝐼Z(𝑒Y) = �1, if ∃(𝑢, 𝑣) ∈ 𝐸VWXZ  where (𝑢, 𝑣) = 𝑒Y
0,  otherwise.  

 
The vector [𝐼!(𝑒Y), 𝐼((𝑒Y), … , 𝐼Z(𝑒Y), … , 𝐼/#(𝑒Y)]  accounts for 
the inclusion or exclusion of 𝑒Y in the pruned contraction path 
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from the source to the sink of with respect to the MAS 𝑅VWXZ  of 
𝑅# , 1 ≤ 𝑠 ≤ 𝑘# . Whenever 𝑒Y ∈ 𝐸#  has its corresponding arc 
𝑒Y,Z ∈ 𝐸VWXZ  included in 𝑅VWXZ , i.e. 𝐼Z(𝑒Y) = 1 , its 𝐿f𝑒Y,Zg  is 
either 1 or 𝐿(𝑒Y) as per Definition 8, otherwise 0(i.e. excluded 
from 𝑅VWXZ , with 𝐼Z(𝑒Y) = 0). 
 
With these, our system of linear equations accounts for the 
connectivity, 𝐿-values, and 𝐶-values of 𝑅# and its set of MAS. 
Thus, a solution to this system establishes a set of 𝐿-values of 
the arcs for each MAS of 𝑅# that establishes the separability of 
𝑅# as per Definition 9. 
 
Solving a system of linear equations is known to be polynomial-
time and -space solvable, i.e. 𝑂(𝑛'), where 𝑛 is the number of 
linear equations involved in the problem(Golub and Van Loan 
1996). For our second problem of determining if 𝑅 is separable, 
𝑛  corresponds to |𝐸#|	which is 𝑂(|𝐸|) . Thus, this problem 
entails 𝑂(|𝐸|') time and space complexity. 
 
◼  
 
From Theorem 4, we were able to establish that should a system 
designer start with a known 𝑘#-sized set of MAS for 𝑅#, realizing 
if each 𝑅# is separable runs in polynomial time. Regarding the 
hardness of determining whether an RDLT 𝑅  is separable, a 
solution to this problem would entail that we first determine the 
set of MAS for each of its expanded vertex simplifications 𝑅! 
and 𝑅( . Thereafter, we can determine if 𝑅  is separable by 
looking at the relationships of their 𝐿-values. In particular, the 
first problem may need us, at worst, to enumerate all possible 
(elementary) paths from the source to the sink vertex of each 𝑅#. 
This takes an exponential number of such paths. 
 
Thus, this would also be the number of contraction paths that the 
MCA can establish for 𝑅# . Thus, our initial problem in 
identifying all the MAS is reducible to a well-known NP-hard 
problem(Cormen et al. 2009) of such path enumeration. Given 
this insight, we pose the following conjecture: 
 
Conjecture 1. Determining if an input RDLT 𝑅 is separable is 
an NP-hard problem. 
 
3.  Results and Discussion 
 
Through this research, we were able to establish new concepts 
and techniques to separate an input RDLT into coherent 
substructures that are usable to represent or generate sets of 
activities by some group similarities; help in targeted model 
decomposition or transformation; facilitate efficient workflow 
analysis; and provide insights on how these are useful in 
building parallel profiles in RDLTs. We were able to also 
establish representatives of each of these groups for examining 
the impact of shared components and their presence in cycles 
within and across such groups. In summary, we established and 
proved the following results as shown in Table 1. 
 
Table 1: Summary of the established definitions, algorithms, and 
proved theorems of this paper. 

# Result Reference 
A. Introduced Definitions 
1 Maximal Activity Definition 3 
2 Looped RDLT Definition 4 
3 Composite Activity Definition 5 
4 Non-impeding Activities Definition 6 
5 Impedance-free RDLT Definition 7 
6 Maximal Activity Structure (MAS) Definition 8 
7 Separable RDLT Definition 9 
B. Algorithm 
1 The Modified Contraction Algorithm 

(MCA) 
Algorithm 1 

# Result Reference 
C. Proved Theorems 
1 Impedance between a maximal activity and another 

activity  
(with a loop) that belong to the same activity group 

Theorem 1 

2 MCA produces a minimal contraction 
structure in 𝑅# 

Lemma 1 

3 Time and space complexity of MCA Lemma 2 
4 Each MAS in 𝑅# generates a maximal 

activity therein in 𝑅# 
Theorem 2 

5 Relationship of Impedance-free and 
separable RDLTs 

Theorem 3 

6 Separable RDLTs and the impedance 
between their MASs 

Corollary 1 

7 Time and space complexity of 
verifying separability of RDLTs given 
a set of MAS for its set of expanded 
vertex simplifications 

Theorem 4 

 
Some Notes on RBS and Parallel Activities 
 
As we have established above in our results, the separability of 
RDLTs mainly focuses on the feasibility of fragmenting them 
through their 𝐶 - and 𝐿 -attributes as reflected in the looped 
versions of the vertex simplifications of 𝑅. That is, the 𝐶-values 
drive this fragmentation by imposing that the necessary set of 
conditions for reachability is accounted for in entire fragments. 
Meanwhile, 𝐿-values drive it by imposing that the arcs inside 
each fragment are reusable despite that such arcs appear in 
separate fragments due to multiple (maximal) activities sharing 
them. 
 
With our use of looped RDLTs to sequentially simulate sets of 
activities to verify impedance with respect to each other, we 
have momentarily excluded the case wherein such activities may 
affect each other in terms of the 𝑀-attribute, i.e. their use of RBS. 
That is, we pose as a future research endeavor the parallelized 
simulation of activities, alongside their sharing and use of RBS 
components in overlapping time intervals. For this case, resets 
may cause the cancellation of ongoing processes in at least one 
of these activities, thereby such activity never completes and/or 
may trigger unexpected behavior in 𝑅. As a preliminary step to 
manage these issues on parallel activities, we offer the initial 
definition below. 
 
Definition 10. (Reset-safe RDLT) 
 
An impedance-free RDLT 𝑅 is reset-safe if for every pair of 
maximal activities 𝑆 and 𝑆′ of the input-output pair [𝑠, 𝑓], either 
of the following holds: 
 

• if 𝑆 and 𝑆′ are checking/traversing arcs inside an RBS 
𝐺 of 𝑅, both will exit an outbridge of a vertex in 𝐺 at 
the same time, 

• if 𝑆 and 𝑆′ do not use 𝐺 at the same time, or 
• if 𝑆′ and 𝑆′ do not use 𝐺 at all. 

 
In addition to Definition 10, we have the following conjecture 
with regard to the relationship of impedance-free and separable 
RDLTs in the context of parallel activities: 
 
Conjecture 2: 𝑅 is reset-safe if 𝑅 is separable and if for every 
pair of MAS 𝑅VWX and 𝑅′VWX of 𝑅# of 𝑅, the following hold: 
 

1. for every non-RBS (𝑥, 𝑦) ∈ 𝐸 , every path leading 
from (𝑥, 𝑦)  to an in-bridge of an RBS 𝐺  is an 
elementary path, 
 

2. for every out-bridge (𝑢, 𝑣) ∈ 𝐸 of 𝑢 ∈ 𝑉 of 𝐺, and its 
corresponding arc (𝑢!, 𝑣!) ∈ 𝐸VWX  f(𝑢(, 𝑣() ∈
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𝐸′VWXg, the number of contraction steps from the 𝑠! to 
𝑣! in 𝑅VWX is equal to the number of contraction steps 
from 𝑠(  to 𝑣(  in 𝑅′VWX , where 𝑠!  and 𝑠(  are both 
sources or both targets of looping arcs in 𝑅VWX  and 
𝑅′VWX, respectively. 

 
4.  Conclusions and Future Work 
 
Since RDLTs were introduced in (Malinao 2017), there have 
been approaches in subsequent literatures that extract sub-
profiles in such models either via model decomposition or model 
transformations. These approaches aim to extract smaller sets of 
information from an input RDLT to help generate simpler and/or 
smaller models. These were previously done with manual labor 
and human intervention to choose a substructure or behavior (via 
activity extraction) from the input RDLT. Through the concepts 
and techniques of our study, we are now able to isolate these 
substructures and sets of behaviors through the extraction of 
MAS and their respective maximal activity groups. These MAS 
and maximal activity groups, and particularly their maximal 
activities, can be then used to analyze the RDLT in a more 
efficient manner rather than by looking at individual 
substructures or activities. 
 
One of the most important contributions of this paper is that the 
results herein usher the concept of shared components between 
and among different (maximal) activities in 𝑅(𝑅#). It also offers 
a view of the impact of having shared components that are 
involved in loops. We can realize that this can result in 
deadlocks in workflows despite a sequential yet consecutive 
execution of activities that share such components. That is, 
activity completion can never be accomplished for at least one 
of these activities. This information can now serve as a valuable 
input to the goal of parallelization of activities in RDLTs that 
represent real-world systems with parallelizable structures and 
behaviors. 
 
Lastly, we have also provided in this paper a jumpstart to 
modeling and analyzing RDLTs with parallel profiles that 
include reset structures and behaviors. With this, we foresee and 
recommend as future work to extend the activity extraction 
algorithm in literature as a parallel algorithm. This would also 
mean opening the field of multidimensional workflow modeling 
to properties related to having parallel activities such as 
generalized soundness and its weakened notions(van der Aalst 
1996); benchmarking and transformations of models that exhibit 
maximally parallelizable profiles; among others. 
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